
Distop: A Low-overhead Cluster Monitoring System

Daniel Andresen, Nathan Schopf, Ethan Bowker and Timothy Bower
Department of Computing and Information Sciences

234 Nichols Hall, Kansas State University
Manhattan, KS 66506

{dan, nathan, eab9844, tim}@cis.ksu.edu
Of£ce: (785)532-6350, Fax: (785)532-7353

Abstract

Current systems for managing workload on clusters of
workstations, particularly those available for Linux-based
(Beowulf) clusters, are typically based on traditional
process-based, coarse-grained parallel and distributed pro-
gramming. The DESPOT project is building a sophisticated
thread-level resource-monitoring system for computational,
storage and network resources [2]. The original imple-
mentation of DESPOT was based on SGI’s Performance
Co-Pilot (PCP) to facilitate the collection of performance
monitoring data and to provide an API for the scheduling
algorithm to retrieve the data. Unfortunately, the over-
head of PCP and the infrastructure required to use PCP
slowed down the performance of the DESPOT scheduling
algorithms. In this paper we present an alternative to PCP
which we call Distop. Distop was developed speci£cally to
satisfy the needs of the DESPOT project for low-overhead,
£ne-grained resource-monitoring tools for per-process net-
work and other resource usage. We also present experimen-
tal results indicating the overhead of our system is minimal
while providing accurate resource utilization data.

1 Introduction

Current systems for managing workload on clusters of
workstations, particularly those available for Linux-based
(Beowulf) clusters, are typically based on traditional
process-based, coarse-grained parallel and distributed pro-
gramming [13, 3]. In addition, most systems do not address
the need for dynamic process migration based on differing
phases of computation. The DESPOT project is building a
sophisticated, thread-level resource-monitoring system for
computational, storage, and network resources. We plan to
use this information in an intelligent scheduling system to

perform adaptive process/thread migration within the clus-
ter. Full details of DESPOT architecture were presented in
a previous paper [2].

DESPOT
Network

communication
monitor

DESPOT
Thread

resources
monitor

Other PCP
monitors

XML/SNMP

SGI Performance
Co-Pilot (PCP)

Grid
schedulers

DESPOT
cluster monitor

DESPOT-enhanced
job scheduler

Figure 1. Original DESPOT architecture.

Of central importance to process scheduling systems such
as DESPOT is the collection of system performance mon-
itoring data which is used by the scheduling algorithm.
Since DESPOT incorporates per-process and per-thread
data into the scheduling algorithm, it has demanding perfor-
mance monitoring requirements. The original implementa-
tion of DESPOT was based on SGI’s Performance Co-Pilot
(PCP) to facilitate the collection of performance monitor-
ing data and to provide an API for the scheduling algorithm
to retrieve the data. Unfortunately, the PCP proved to have
too much overhead which slowed the performance of the
scheduling algorithms. In this paper we present an alterna-
tive to PCP called distop, which was developed speci£cally
to satisfy the needs of the DESPOT project.

Section 2 discusses related work. Section 3 covers the de-
sign of our system. Section 4 offers our initial experimental
results, and £nally, Section 5 offers our conclusions and £-
nal thoughts.

2 Background

We £rst brie¤y discuss Beowulf clusters, and how they dif-
fer from a network of workstations (NOW) [13, 1]. We then
go on to discuss various monitoring and scheduling tools
such as PCP.

Beowulf clusters

The £rst Beowulf cluster computer was built by Thomas
Sterling and Don Becker at CESDIS from 16 Intel 486DX4
processors connected by channel-bonded Ethernet. “The
machine was an instant success and their idea of provid-
ing COTS (commodity off the shelf) base systems to sat-
isfy speci£c computational requirements quickly spread
through NASA and into the academic and research commu-
nities” [3]. Beowulf systems are marked by a reliance on
COTS machines, publicly available software (in particular,
the Linux operating system, the GNU compilers and pro-
gramming tools, and the MPI and PVM message-passing li-
braries), and fast-node interconnects (typically Ethernet or
Myranet). This software and hardware environment pro-
vides a robust system for today, with the ability to migrate
easily to faster and better systems in the future due to stan-
dards like the Linux API, and message passing based on
PVM1 and MPI2 [8, 5].

Performance monitoring tools

Several commercial and open-source tools have been de-
veloped to monitor the performance of a large number of
computers such as a typical computing cluster. In con-
trast with existing systems, which usually display informa-
tion only graphically, the DESPOT project integrates per-
formance monitoring with scheduling systems. In the fol-
lowing sections, we discuss open-source cluster-monitoring
tools.

Several tools have been developed to monitor a large num-
ber of machines as stand-alone hosts as well as hosts in
a cluster. These tools can be useful because they monitor
the availability of services on a host and detect if a host is
overloaded, but they do not generally provide performance-
monitoring information at the level of detail needed to tune
the performance of a Beowulf cluster. Examples of these
systems are PaRe Procps [14], BWatch [12], Mon [16], No-
col [11], and Netsaint [7].

1Parallel Virtual Machine
2Message Passing Interface

Detailed tracing of message-passing events in a cluster is af-
forded with theConch Visualization Packagefrom Georgia
Tech [15]. This tool can be used to perform detailed traces
of the execution of a distributed program, but the data re-
ported is more relevant to tracing and debugging than mea-
suring performance.

TheSMILE Cluster Management System(SCMS) is an ex-
tensible management tool for Beowulf clusters [9]. SCMS
provides a set of tools that help users monitor, submit com-
mands, query system status, maintain system con£guration,
and more. System monitoring is limited to heartbeat-type
measurements.

The Network Weather Service, although not targeted at
Beowulf clusters, is a distributed system that periodically
monitors and dynamically forecasts the performance vari-
ous network and computational resources can deliver over
a given time interval [17, 18]. The service operates a
distributed set of performance sensors (network monitors,
CPU monitors, etc.) from which it gathers system condi-
tion information. It then uses numerical models to generate
forecasts of what the conditions will be for a given time
frame. NWS is used for various meta-computing systems
such as Globus and APPLeS [6, 4].

MOSIX is a popular platform for supporting distributed
computing. It enhances the Linux kernel with cluster com-
puting capabilities. In a MOSIX cluster, there is no need
to modify applications to run in the cluster, or to link ap-
plications with any library, or even to assign processes to
different nodes. MOSIX does it automatically and transpar-
ently. The resource sharing algorithms of MOSIX attempt
to equalize the processing load of the machines in the clus-
ter. However, the scheduling algorithms only consider the
total CPU load and memory usage of each machine. Per
process load and network load measurements are not con-
sidered [10].

MOSIX was useful for our experiments for two reasons.
First of all, it provides a framework and an API for migrat-
ing processes between machines. Thus it is a convenient
platform for the development of prototype scheduling algo-
rithms. Secondly, the built-in MOSIX scheduling algorithm
offers a baseline measuring stick for comparing our own
scheduling algorithms.

TheSGI Performance Co-Pilot (PCP)provides a systems-
level suite of tools that cooperate to deliver distributed, in-
tegrated performance management services. PCP provides
the ability to quickly isolate and understand performance
behavior, resource utilization, activity levels and perfor-
mance bottlenecks. Performance data may be collected and
exported from multiple sources, most notably the hardware
platform, the IRIX kernel, layered services, and end-user

applications, and is returned in a structured text format.

PCP is the component of DESPOT that distop is designed to
replace. While PCP has many features which may be useful
in some applications, many of those features are not needed
in the DESPOT project. The infrastructure associated with
those additional features slows the system down enough that
it is not able to adjust quickly enough to changes in resource
usage. Because of this, we decided that a more ef£cient
performance monitoring system was necessary.

3 System design

The distop package is intended to be used in a distributed
computing environment to provide a lightweight means of
collecting the overall system usage. The package is divided
into three applications. There is a daemon, a server, and a
client. The daemon program runs in the background collect-
ing current system information, comparing it to previously
collected system information, and storing the information
as a ratio of difference over time. The server, upon request
from the client, collects non-ratio system information, as
well as obtaining the stored information from the daemon,
and returns it to the client. The shared storage for the server
and daemon is implemented using a shared memory seg-
ment along with a semaphore for mutual exclusion. For pur-
poses of testing distop as a stand alone package, the client
displays the information obtained from the server. When in-
tegrated with the despot project, the client is the scheduling
algorithm.

Daemon: The daemon needs to run on any machine where
system information needs to be collected. The daemon
stores the calculated information in such a way that it will
be easily accessible to the server. The daemon will run a
continuous loop updating the stored information to ensure
that the information is kept up to date.

Server: The server also runs on any machine where system
information needs to be collected. The server, when started
after the daemon, will wait for requests from the client.
Upon receipt of a request from the client the server will col-
lect system information that is of non- ratio type (i.e., it will
collect total memory usage, current time, etc). The server
will also obtain the most recent information that the daemon
has stored. It will then return this information to the client.

Client: The client can run on any machine that is network
enabled, and can connect to a machine that has a server
and daemon running on it. The client then connects to the
server machine and requests the system information from
the server. The client and server communicate via RPC.

The server and daemon collect system information from
£les stored in the/proc £le system. The/proc £le sys-
tem is a virtual £le system containing £les which are kept
up to date by the kernel.

Files from the/proc £le system that are of importance are:

1. /proc/loadavg — Load averages for the system.

2. /proc/meminfo — Overall system’s memory in-
formation.

3. /proc/stat — Swapping, paging, and CPU infor-
mation.

4. /proc/net/dev — Network device information.

5. /proc/net/tcp — Open tcp socket statistics.

6. /proc/net/udp — Open upd socket statistics.

7. /proc/[number]/stat — Individual process in-
formation.

All information collected by the daemon is ratio informa-
tion (i.e., bandwidth, per- process CPU usage, etc). This is
collected by having the daemon collect all initial informa-
tion at startup. Then, every 5 seconds the daemon wakes up
and collects the same information again. It calculates the
differences between current information and the initial in-
formation, and then divides each quantity by the amount of
time since the last reading. Finally, the per-second informa-
tion is stored in the shared memory segment, the variables
holding the initial information are updated with the current
information, and the daemon goes back to sleep for 5 sec-
onds. This goes on for the life of the daemon process.

Monitoring communication

Since connections are monitored at the socket/packet level,
some connections are unable to be monitored completely.
This would include communication through shared mem-
ory segments; or sockets to machines outside the cluster, in
which case statistics are not known for the remote process.

It is not possible to monitor the amount of intra-node com-
munication in generic Beowulf systems (i.e., those not run-
ning DSM or other distributed IPC systems) without creat-
ing several headaches. First, a large amount of kernel hack-
ing would be required, including changes to sensitive areas
of code – particularly the networking and shared-memory
sections. Second, by adding monitoring code, we would
end up signi£cantly impacting performance by adding la-
tency to transmission times. And £nally, this performance-
monitoring kernel code would have to be maintained as the
kernel is revised.

Table

Signal
Handler

 S ocket

TCP/IP
Filter

PCAP

OS

NetC ard

Client

Figure 2. Traf£c capture module structure.

We could solve this intra-node communication problem by
implementing a layer above the standard system library
calls that records relevant information. This has the same
pitfalls as a kernel modi£cation, but has the possibility of
missing data through the use of static linking or nonstan-
dard libraries in the observed applications.

ThePcapmodule of distop is responsible for collecting in-
formation about the amount of traf£c between each node
in the cluster, and consists of two processes: a statistics
process which gathers information from the network inter-
face cards in promiscuous mode, and an agent process lis-
tening and honoring requests for these statistics The statis-
tics process collects packet counts as well as total byte
counts. Thus, we can also distinguish data transfer con-
nections from interactive connections based on the ratio of
bytes to packets (a low ratio probably indicates an interac-
tive session). The module retains and reports only recent
traf£c. Longterm trends should be recorded and analyzed
with another module if needed.

The implementation is largely based on the PCAP library.
Tcpdumpis a front-end parser and pretty-printer of the in-
formation which libpcap gathers. The statistics process
re-uses the tcpdump code, replacing pretty-printing with
statistics-gathering code. Time stamps, byte counts, and
packet counts are recorded in a hash table, which can then
be queried through the second process. The PCAP library
works through inserting an IP £lter within the kernel to
promiscuously sort through all packets received by a node.

To avoid modifying libpcap, we had to use a two-process
system (Figure 2). Currently, libpcap has its own event loop
with no hooks to register new events for which to trigger
call-backs (such as IO on a £le descriptor) except the tradi-
tional signal API. Thus, if queries from outside the machine
are to be honored, a separate process is needed to listen
for such queries, signal the statistics process, and relay the
info to the network. This agent process can be implemented
to honor INET socket-based requests, PCP requests, or re-

quests of any other type.

Pcapgathers information about bandwidth usage by vari-
ous processes, which is expressed in terms of packets per
seconds and bits per second.

Avg. CPU Avg. RAM Avg. Ping
% (KB) (ms)

Not running n/a n/a 0.2
1 client (local) 1.7 2128 0.1
1 client (remote) 1.7 2135 0.2
2 clients 1.6 2133 0.2
3 clients 2 2128 0.2
4 clients 2.1 2642 0.3

Table 1. Resource consumption on 600Mhz
Celeron server

Avg. CPU Avg. RAM Avg. Ping
% (KB) (ms)

Not running n/a n/a 1.2
1 client (local) 2.5 2152 0.9
1 client (remote) 2.1 2152 1.1
2 clients 2.5 2149 0.9
3 clients 2.6 2166 1
4 clients 2.57 2148 0.9

Table 2. Resource consumption on Dual
1.5Ghz Athlon server

4 Experimental results

To test the performance of distop, especially in relation to
per-process bandwidth monitoring, we downloaded one of
the CD images for Red Hat Linux from the mirror hosted by
the University of Indiana (over Internet2) using ncftp, which
down-loaded at an average rate of 2–3 MB/s. We took per-
formance measurements for one local client, one remote
client, and up to four clients (one local) up to four clients.
Servers and clients ranged in capability from a 600Mhz.
Celeron with 256MB RAM to a dual 1.5Ghz. Athlon with
2GB RAM. All machines were running the Linux 2.5 ker-
nel. The performance measurements we took are average
CPU usage and RAM usage on the server, and average ping
time to the clients. The purpose of measuring ping time is
to determine how much effect, if any, our use of libpcap has
on packet latency. (As a control value, we measured ping
time while the down-load was in progress without distop
running.) The clients were polled at 2 s. intervals, and trans-
mitted approximately 1KB of data per query.

Our results from Tables 3 and 3 indicate that our system,
at its maximum resource consumption, consumes a small
fraction of available resources on the server while providing
accurate per-process resource usage data. Resource utiliza-
tion on the clients and bandwidth utilization on a 100Base-
T network for reporting the results was negligible, as was
the additional latency imposed by the Pcap module. Peak
bandwidth on the clients was also unaffected.

5 Conclusions and future work

In this paper we have presented our system for monitoring
communication within a Beowulf cluster at the process-to-
process level. , and shown how the system can also be used
to monitor Other monitoring systems for Beowulf clusters
are either methodology-speci£c (such as LAM), or present
only aggregated communication results. We have also given
experimental results indicating that the system has the low
overhead and minor infrastructure requirements to be useful
in our application domain.

We plan to extend the system and viewing application to a
hierarchical organization to increase its scalability over the
current, centralized system. We are also working to achieve
the ability to monitor individual Java threads through iden-
tifying their mapping to kernel-level threads.

Acknowledgments This material is based in part upon
work supported by the National Science Foundation un-
der award numbers ITR-0082667 and ACS-0092839. Any
opinions, £ndings, and conclusions or recommendations ex-
pressed in this publication are those of the author(s) and
do not necessarily re¤ect the views of the National Science
Foundation.

References

[1] T. E. Anderson, D. E. Culler, and D. A. Patterson. A case for
NOW (Networks of Workstations).IEEE Micro, 15(1):54–
64, Feb. 1995.

[2] D. Andresen, S. Kota, M. Tera, and T. Bower. An ip-
level network monitor and scheduing system for clusters. In
Proceeding of the 2002 International Conference on Paral-
lel and Distributed Processing Techniques and Applications
(PDPTA’02), Las Vegas, June 2002.

[3] D. Becker. The Beowulf project, July 2000.
http://www.beowulf.org.

[4] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao.
Application-level scheduling on distributed heterogeneous
networks. InProceedings of Supercomputing’96, Pittsburgh,
PA, November 1996.

[5] M. P. I. Forum. MPI: A message-passing interface standard.
Technical Report UT-CS-94-230, Department of Computer

Science, University of Tennessee, Apr. 1994. Wed, 7 Jul 99
23:57:06 GMT.

[6] I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. The International Journal of Super-
computer Applications and High Performance Computing,
11(2):115–128, Summer 1997.

[7] E. Galstad. Netsaint Network Monitor.
http://www.netsaint.org/.

[8] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
and V. Sunderam.PVM 3 User’s Guide.

[9] P. R. Group. SCMS Web Page. Kasetsart University.
http://smile.cpe.ku.ac.th/.

[10] The MOSIX Project Homepage.
http://www.mosix.cs.huji.ac.il/.

[11] Netplex Technologies Inc.Nocol System Monitoring Tool.
http://www.netplex-tech.com/software/nocol.

[12] J. Radajewski. bWatch - Beowulf Monitoring Sys-
tem. University of Southern Queensland, Apr. 1999.
http://www.sci.usq.edu.au/staff/jacek/bWatch/.

[13] T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A.
Ranawake, and C. V. Packer. BEOWULF: A parallel work-
station for scienti£c computation. InProceedings of the
24th International Conference on Parallel Processing, pages
I:11–14, Oconomowoc, WI, Aug. 1995.

[14] F. Strauss and O. Wellnitz. Procps Monitoring
Tools. Technical University Braunschweig, June 1998.
http://www.sc.cs.tu-bs.de/pare/results/procps.html.

[15] B. Topol. Conch Visualization Package. Graphics,
Visualization and Usability Center; Georgia Institute of
Technology. http://www.cc.gatech.edu/gvu/people/ Under-
grad/Brad.Topol/conchviz.html.

[16] J. Trocki. Mon System Monitoring Tool. Transmeta Corpo-
ration. http://www.kernel.org/software/mon/.

[17] University of California San Diego.The Network Weather
Service Homepage. http://nws.npaci.edu/NWS.

[18] R. Wolski. Dynamically forecasting network performance
using the network weather service.Cluster Computing,
April 1998.

