
67june 2016 • IEEE ROBOTICS & AUTOMATION MAGAZINE •1070-9932/16©2016IEEE

T
his article considers strategies for teaching
beginning students how to program mobile robots
for autonomous operation. Many high school and
beginning undergraduate students desire to learn
about robotics, but they may lack the required

knowledge. Experiences from an undergraduate course are
described to illustrate the robot, its programming
environment, software design, and algorithms, which faculty
can use to guide beginning students from a place of no prior
experience to writing impressive, autonomous mobile-robot
programs. Autonomous algorithms that perform well and are

Digital Object Identifier 10.1109/MRA.2016.2533002

Teaching Introductory
Robotics Programming

By Timothy Bower

Date of publication: 12 May 2016

Learning to Program with National Instruments’ LabVIEW

appropriate for beginning students, including a new
wall-following algorithm, are reviewed.

Robotics has become quite popular in education. As the
potential for applying robotics to meet real needs expands
with the maturation of the technology, so too has interest
in learning about robotics. Students of all ages and educa-
tional levels want to learn how to build and program
robots. The cross-discipline nature of robotics makes it
ideal for youths to explore career possibilities in science,
technology, engineering, and mathematics (STEM).
Affordable hardware options abound for the beginning
student wishing to build a simple robot. Sufficient docu-
mentation for learning to write a program for the manual
operation of robots is also available. Thus, a lack of prior

b
a

c
k

g
r

o
u

n
d

 im
a

g
e

 l
ic

e
n

s
e

d
 b

y
 g

r
a

p
h

ic
 s

to
c

k

Authorized licensed use limited to: Kansas State University. Downloaded on May 16,2022 at 21:53:52 UTC from IEEE Xplore. Restrictions apply.

68 • IEEE ROBOTICS & AUTOMATION MAGAZINE • june 2016

knowledge does not need to prevent students at any age or
educational level from pursuing their interest in robotics.

The beginning student’s lack of preparation, however, could
become a problem when it comes to writing programs to

implement autonomous
algorithms. Beginning stu-
dents may not have a suffi-
cient level of programming
experience or may not be
prepared to understand
some of the mathematics
of autonomous algorithms.
Thus, the robotics pro-
gramming instructor has a
challenge. To be successful,
the instructor must chal-
lenge beginning students
to learn new concepts that
are appropriate to their
educational level and to
exercise their problem

solving skills. Zajac [1] points out that mentors and teachers
of young and underprepared students must continually
hover at the boundary between two states: 1) providing too
much assistance in solving problems and 2) providing too
little assistance. Students should learn to appreciate the com-
plexities of autonomous algorithms, yet they should also
find personal success from implementing simpler algo-
rithms. This article aims to highlight some of the program-
ming and algorithmic solutions appropriate for introducing
beginning students to autonomous robot programming.

A new course in robotics programming was recently
developed at the polytechnic campus of Kansas State Univer-
sity. To allow lower-level undergraduate students to take the
course, the prerequisites were limited to a programming
course and trigonometry. Based on experiences from the first
two offerings of the course, matters related to the robot, the
programming environment, software design, and algorithms
for introducing beginning students to autonomous mobile-

robot programming are considered in this article. Students
began the course by writing a sequence of fairly simple pro-
grams to operate and test the robot’s motors and sensors. As
the students learned about robotics, they also learned how to
program with LabVIEW. LabVIEW is a trademark of
National Instruments (NI) [2], [5]. Later, network program-
ming was used to couple the robot program with a program
developed to run on a host computer. Autonomous algo-
rithms could then be studied and implemented. By the end
of the semester, each student wrote a program to move the
robot to a goal location while avoiding convex and concave
obstacles and also completed a self-determined final project.
Avoidance of a large concave obstacle, which was referred to
as the cul-de-sac problem, proved to be an interesting and
challenging assignment for the students.

The Development Environment
Because the focus here is on programming robots, it is impor-
tant that students are able to write robot programs without
delay. For this to happen, a prebuilt, dependable robot is need-
ed as well as a programming environment where it is easy to
develop, download, run, and debug robot programs. The NI
LabVIEW Robotics Starter Kit, also called the DaNI Robot,
was used [2] (see Figure 1). Using this environment, students
were writing robot code by the second week of the semester.

The DaNI Robot Platform
The DaNI Robot uses an NI single-board reconfigurable
input/output-embedded controller which has a real-time pro-
cessor, a user-reconfigurable field-programmable gate array
(FPGA), and input/output (I/O) on a single circuit board. The
robot’s built-in motors and sensors are controlled through the
FPGA. Additional I/O ports for analog and digital I/O and
pulse width modulation are available if needed. An ethernet
port is used for communication between the robot and a host
control computer. For wireless communication, a Wi-Fi
bridge with an external battery pack is attached to the robot.
The robot uses two 4-in wheels in a directional drive configu-
ration with a trailing omni-wheel. Wheel rotation is measured
with optical quadrature encoders. The distance to objects is
measured with an ultrasonic sensor that is mounted to a
servo motor so that the sensor can rotate from side to side.

The LabVIEW Environment
LabVIEW is a graphical programming environment. It
uses a graphical model for expressing program logic on
block diagrams. Graphical capabilities are also employed
for building user interfaces. Each function in a program,
which is called a virtual instrument (VI), consists of a
block diagram and a front panel. Some VIs only need a
simple front panel to connect the VI’s input and output
terminals to the block diagram. Other VIs may use a
front panel with a graphical user interface and a variety
of meters and graphs. LabVIEW’s simple programming
model and graphical capabilities make it a well-suited
environment for rapid prototyping and data visualization.

Figure 1. The LabVIEW Robotics Starter Kit, also called the DaNI
Robot. (Photo courtesy of National Instruments.)

LabVIEW’s simple

programming model and

graphical capabilities

make it a well-suited

environment for rapid

prototyping and data

visualization.

Authorized licensed use limited to: Kansas State University. Downloaded on May 16,2022 at 21:53:52 UTC from IEEE Xplore. Restrictions apply.

69june 2016 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

A less obvious but important feature of LabVIEW is
that it uses a data-flow model for sequencing the execu-
tion of code. This means that a node on a block diagram
will execute when data for all of the node’s input terminals
are available. Nodes are often arranged in a sequential
data path where an output from a node is an input to
another node; thus, the second node cannot execute until
the first node is finished and the data are passed along.
However, the sequence of execution for parallel nodes is
indeterminate. This behavior occasionally requires special
consideration by the programmer; however, capabilities
are provided to control the execution order when needed.
The advantage of the data-flow model is that it allows
LabVIEW to be inherently parallel. When code elements
and loops are not in a sequential data path, they can be
considered to run as parallel threads of execution.

LabVIEW provides convenient capabilities to synchro-
nize access to critical code sections and to exchange data
between parallel threads. The following are two ways syn-
chronization facilities can be used in robotics programming.

●● �Both the robot and the host controller programs use
parallel loops. Various loops generate messages to be
sent over the network. The built-in queue facility pro-
vides a convenient mechanism for combining the mes-
sages into one data stream. Another loop takes messages
from the queue and sends them over the network.

●● �The action engine provides a simple mechanism to syn-
chronize access to critical code sections and to exchange
data between threads. An action engine is a VI that can
store data using either feedback nodes or uninitialized
shift registers. A case structure is used with an enumera-
tor input to the VI for selecting actions to perform when
the VI is invoked. Because VIs are, by default, nonreen-
trant (mutual exclusion), instances of the same action
engine VI may be placed in parallel threads to safely
share data or access a critical section [3].
As messages from the robot containing sensor data are

received, the host controller can use action engines to
make calculations and save the data. The autonomous
algorithms safely read the data from the action engines as
needed. The simplicity of developing programs with par-
allel threads of execution makes LabVIEW ideal for
robotics and especially for teaching robotics program-
ming to beginning students [3], [4]. In the robotics
programming class, LabVIEW provided a gentle intro-
duction to parallel programming concepts that would
benefit the students in more advanced programming
classes. LabVIEW can be viewed as a programming lan-
guage, but it is really an integrated development environ-
ment [5]. LabVIEW makes it easy to program, deploy,
and debug robot programs.

LabVIEW Robot Programs
There are two distinct modes for operating robots with
LabVIEW. The first mode is useful for debugging pro-
grams, is simple to use, and provides students with a

convenient mechanism to learn about robot motors and
sensors. However, it does not have the real-time perfor-
mance and program modularity of the second mode. The
second mode requires more effort, but results in a better
framework for running autonomous programs.

LabVIEW Interactive Mode
When a program intended for a robot platform is initiated
on a computer, the robot code is downloaded to the robot
and runs. In this mode, the robot is controlled from the com-
puter, and any robot data may be viewed from the computer.
This mode has a lot of value for educational and debugging
purposes. However, LabVIEW on the computer and on the
robot are coordinating extensively, using resources of the
robot central processing unit and the network.

Networked Standalone Mode
A LabVIEW program may be compiled and downloaded
to the robot to run as a start-up program. Such a program
could run as an autonomous application with no interac-
tion with a host controller. However, a purely standalone
program has limited functionality. Networking code
should be added to the application so that the robot com-
municates with a host controller program that is running
on a computer. The host controller allows a user to con-
trol the robot and can also provide another processing
resource to augment the robot processor.

In the robotics programming course, the interactive
mode was initially used for a sequence of programming
and experimentation assignments. In addition to learning
about robotics hardware, students developed programs
that implemented major algorithmic components for the
programs to be developed later in the semester. The reuse
of code made the more complex assignments seem less
daunting and more like incremental assignments. In the
early assignments, students developed the code to drive
the robot and to operate the servo motor and ultrasound
sensor to collect data for avoiding obstacles. After an intro-
duction to network programming, a framework for future
assignments was developed based on the networked stand-
alone mode. To allow immediate sending of data, two TCP
connections are made, each used for sending data in one
direction. The robot acts as the server waiting for connec-
tions from a host controller.

In the first course offering, the host controller only
gave operating instructions to the robot. However, in the
second course offering, the controller also performed the
algorithmic computations. Thus, the robot ran a simple
program to control its hardware while taking driving
directions from the controller and returning sensor data.
Shifting algorithmic processing from the robot to the
computer offered performance benefits and made pro-
gram development easier due to the computer’s faster
processing capability. All students used the same message-
passing application programming interface between the
robot and host controller, so it was not necessary to make

Authorized licensed use limited to: Kansas State University. Downloaded on May 16,2022 at 21:53:52 UTC from IEEE Xplore. Restrictions apply.

70 • IEEE ROBOTICS & AUTOMATION MAGAZINE • june 2016

any changes to the robot as each student tested his or
her program.

After the program-
ming efforts switched
from developing pro-
grams to run on the
robot to programming
the host controller, the
lectures and assignments
shifted to autonomous
algorithms. Students de
veloped a sequence of
autonomous behaviors
for the go-to goal with-
out obstacle avoidance,
the go-to goal with
avoidance of convex
obstacles, wall following,
and the cul-de-sac prob-

lem. With the exception of a few introductory assign-
ments, each programming assignment contributed code
that was used in the solution to the cul-de-sac problem,
shown in Figure 2.

Autonomous Algorithms
Autonomous behaviors often have multiple solutions. So,
in an introductory course, the instructor might discuss
more than one algorithm capable of producing a desired
behavior, but direct students to implement algorithms
that yield acceptable behavior with concepts appropriate
to the students’ educational level. Except for wall follow-
ing, all of the algorithms used in the robotics program-
ming course may be found in literature. In the case of
wall following, a new algorithm was developed that was
simple for students to understand and implement, yet
performed well.

A Comment on PID Controllers
The proportional–integral–derivative (PID) feedback-con-
trol system is certainly one of the most important control
algorithms used in robotics [6]. PID controllers were dis-
cussed in a lecture of the introductory course on robotics
programming. However, because the focus of the course is
on programming rather than control theory, it was felt that
tuning the PID controllers would introduce challenges that
are not appropriate for the objectives of the course.

Odometry
Early in the semester, students learned to read odometry
data from the optical encoders and convert the data to lin-
ear distance traveled within a time interval. Initially, they
used the odometry data to track the robot position on the
robot platform. Later in the semester, the data were sent to
the host controller for processing. The robot’s location and
orientation in the global coordinate frame is called the
pose of the robot. The robot’s pose consists of its x and y
location and its angle of orientation, θ

	 .
x
yP
i

= > H

Using the distances traveled by the left and right wheels
within an interval of time, the change to the robot’s pose is
calculated using established equations for the kinematics
of differential drive robots. Olson provides a nice online
primer that helps students understand the kinematics
because it works though the calculations in detail [7].

	 ,d d d
2moved

left right
=

+ � (1)

	 ,L
d dright left

} =
- � (2)

where L is the radius of rotation, which is the distance
between the wheels

	 .
cos
sin

x
y

d
dPi

i

i

i

i

i1

moved

moved

i

i

i

}

= ++ > >H H � (3)

Steering the Robot
The right- and left-wheel velocities to steer the robot are
determined by the desired forward and rotational veloci-
ties, v(t) and ω(t). L is the distance between the wheels in
meters. The velocities are in units of m/s. The rotational
velocity, ω, is expressed in rad/s

	 ,v v L
2r
~= + � (4)

	 .v v L
2l
~= - � (5)

However, the rotational velocity is not usually a given for
steering the robot. Steering is specified by a desired head-
ing, ()tz in the global coordinate frame or ()ta z i= -

Figure 2. The cul-de-sac problem uses a large concave obstacle.
Once inside the cul-de-sac, the robot must temporarily move
away from the goal to get out of the cul-de-sac.

Goal

With the exception

of a few introductory

assignments, each

programming assignment

contributed code that was

used in the solution to the

cul-de-sac problem.

Authorized licensed use limited to: Kansas State University. Downloaded on May 16,2022 at 21:53:52 UTC from IEEE Xplore. Restrictions apply.

71june 2016 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

in the robot’s local coordinate frame, and a forward veloc-
ity, V. This is commonly called the unicyle model, which is
expressed as a velocity vector in the global coordinate
frame, U. The steering controller needs to accept U as
its input and provide (v, ω) as output.

PID Tracking
When the robot’s pose is calculated, the point, X, halfway
between the drive wheels is used, which moves in-line
with the wheels, but not perpendicular to the wheels.
Thus it is not possible to directly determine (v, ω) using
the velocity vector for X

	 .
cos
sin

cos
sin

V
V X

v
vU !

z

z

i

i
= =o; ;E E �

So, the common solution is to regulate ω with a PID con-
troller: ()PID~ a z i= = - . The wheel velocities can
then be calculated from (4) and (5).

Direct Calculation
It is possible for a steering controller to directly calculate
reasonable values for (v, ω) from U. Instead of basing the
kinematic analysis on the point X, a new point is used that
is positioned a small distance, l, directly in front of X,

(,)cos sinX x l y li i= + +u . This new point, Xu , can move
in line with and perpendicular to the wheels. So a control-
ler can be designed to satisfy XU = uo .

	

.

sin
cos sin

cos
sin cos

x x l
v l

y y l
v l

i i

i ~ i

i i

i ~ i

= -

= -

= +

= +

uo o o

uo o o
�

By equating U to Xuo , v and ω may be determined

	 ()
() .

cos
sin

cos
sin

sin
cos

cos
sin

V
V l

v

v V

l
V

1
0

0z

z

i

i

i

i ~

z i

~ z i

=
-

= -

= -

; ; ; ;E E E E

�

Applying (4) and (5) yields the wheel velocities. Recall that
a z i= - , which is the steering heading in the robot’s coor-
dinate frame

	 (),cos sinv V Kr a a= + � (6)

	 () .cos sinv V Kl a a= - � (7)

The variable (/)L lK 2= can be regarded as a single tunable
parameter. With K = 0.66, our robots demonstrated respon-
sive, yet smooth and stable steering. The kinematics of an
alternate point Xu are discussed in [8]–[10] and applied to
directional drive robots in [11] and [12]. The online study
guide used with the robotics programming class shows

more detailed analysis of the controller [13]. The students
were able to understand most of the math involved in the
derivation of the controller equations. They certainly
appreciated using a steering controller with a simple, direct
calculation and only one tunable parameter.

Obstacle Avoidance
The obstacle-avoidance algorithm used a simple sum of
vectors as described in [14]. Using only one ultrasound
sensor required refinements to the algorithm, which the
students designed. The servo motor rotates side to side
stopping at fixed positions where ultrasound measurements
are taken. The ultra-
sound data represent the
distance in meters to any
object detected. When
no object is detected, the
maximum range of the
sensor (3 m) is used.

Ultrasound measure-
ments are taken at angles
of {–1.5, –1, –0.5, 0, 0.5,
1, 1.5} rad. Using the
measurements as vec-
tors, the sum of the vec-
tors is calculated to yield the “avoid-obstacle” heading
(see Figure 3). Due to the symmetry of the measurement
angles, αao = 0, when no obstacles are detected, shorter
vectors from obstacle detection cause the sum of vectors
to deflect away from the obstacle. The simple sum of vec-
tors from the ultrasound data was a good start, but the
resulting heading was not adequate. This provided an

Figure 3. The sum of ultrasound measurement vectors yields the
“avoid-obstacle” heading, aao.

αao

The students appreciated

using a steering controller

with a simple, direct

calculation and only one

tunable parameter.

Authorized licensed use limited to: Kansas State University. Downloaded on May 16,2022 at 21:53:52 UTC from IEEE Xplore. Restrictions apply.

72 • IEEE ROBOTICS & AUTOMATION MAGAZINE • june 2016

opportunity for the students to observe, analyze, and col-
laborate to find solutions:

●● It detects objects to the side that pose no collision threat.
•• �The solution was to limit the lengths of the ultra-

sound data linearly by measurement angle so that
forward measurements have greater range than side
measurements.

●● �The sum of the vectors always points forward and does not
adequately deflect away from obstacles.
•• �The solution was to shift each vector in the opposite

direction. Thus, detected obstacles can result in nega-
tive vectors. A panic element to the shift was also
adopted to give larger negative vectors in the event of
a near collision.

Autonomous
Behaviors
One of the parallel execut-
ing loops of the host con-
troller program contains a
finite state machine (FSM)
where the robot’s algorith-
mic behaviors are imple-
mented. With each loop
iteration, an updated
heading and velocity is
calculated so that the
robot drives according
to a specified behavior.

The FSM is a natural construct for implementing autono-
mous behaviors. Implementing the FSM was also a valu-
able educational experience for the students.

Blending Headings
In both the go-to goal and wall-following behaviors with
obstacle avoidance, the final steering heading is a blended
combination of two angles: αao for avoid-obstacle and β
for the behavior component. When there is little threat of
a collision, | | 0ao .a and the behavior component domi-
nate. When the risk of a collision is increased, | |aoa
becomes larger and the robot is diverted. We define a
weighting variable, h:

	
| | | | ,h
1

if
otherwise

Threshold Thresholdao
ao 1

a
a= * � (8)

	 () · .h h1· aoa a b= + - � (9)

Pure obstacle avoidance, aoa a= , occurs when | |ao $a
Threshold. The Threshold is a tunable parameter for
each behavior.

Go-To Goal
The go-to goal behavior uses the robot’s pose and the
location of a goal. A simple trigonometry calculation
provides the direction to the goal, gz . The robot heading
is then simply g ga z i= - . Adding blended obstacle
avoidance simply requires using the VI to compute the
steering heading with (8) and (9) using gb a= and

/4Threshold r= . The only difficulty that any students
had with this quick assignment was making sure that the
robot stopped at the goal.

Wall Following
Autonomous controlled mobile robots require a wall-fol-
lowing behavior to maneuver around large concave obsta-
cles. Convex obstacles may be avoided using a blended
go-to goal with avoid-obstacle behavior. However, when
inside a large concave obstacle, such as a cul-de-sac, the
go-to goal-based behavior causes the robot to become
stuck in a local minimum, where it wanders in the cul-de-
sac but refuses to drive away from the goal as is needed to
exit the cul-de-sac. When a wall-following behavior is
used, the robot can follow the contours of the obstacle to
move around it and then proceed toward the goal location.
The algorithm used to achieve wall-following behavior
uses the blended avoid-obstacle concept along with a
behavioral heading, αwall, which follows the contours of
the wall. The algorithm for computing the behavioral
heading was original. It was developed specifically to be a
simple algorithm for students to understand and imple-
ment. Despite its simplicity, the overall algorithm has dem-
onstrated good performance for the intended application.

The behavioral heading calculation uses an abstract right
triangle, shown in Figure 4. The side lengths of the triangle
derive from the first two ultrasound measurements from the
side of the robot facing the wall. The wall-following heading
is then simply an angle calculation from the triangle. Using
the known measurement angles, the first two measurements
are converted to points in the robot’s local coordinate frame.
The wall-following heading is given by

	

((| |),
(_ | |))

tana y D
x y

2

if the wall is to the left
if the wall is to the right

Wall lead
1

1 0

wall

wall

t

a
t

t

= -

+ -

=
-
)

.

�

The relationship of |y1| to Dwall reports the robot’s current
position relative to what is detected about the approaching

Figure 4. An abstract right triangle for computing the wall-following
heading.

(x0, y0) (x1, y1)
Dwall

Wall_lead

αwall

y1 − Dwall

x1 + Wall_lead − y0

y0
x1

After students successfully

demonstrated their

program to solve the

cul-de-sac problem, they

consistently expressed a

sense of accomplishment.

Authorized licensed use limited to: Kansas State University. Downloaded on May 16,2022 at 21:53:52 UTC from IEEE Xplore. Restrictions apply.

73june 2016 • IEEE ROBOTICS & AUTOMATION MAGAZINE •

contour of the wall. The x1 and _Wall lead terms serve as
damping factors in the equation. The |y0| term strongly
influences the heading when the wall ends or turns away
from the robot; see Figure 5.

The wall-following heading and the avoid-obstacle head-
ing complement each other. The wall-following component is
most adept at keeping the robot from getting too far from the
wall and induces the turning when the wall turns away from
the robot. Conversely, the avoid-obstacle heading diverts the
robot when it or its projected path is too close to the wall. The
steady-state distance from the wall is where the wall-following
and avoid-obstacle headings offset. On our system, Dwall was
set at 0.4 m, and the robot tracked walls at a range of approxi-
mately 0.5 m. Adding the blended obstacle avoidance simply
requires the use of VI to compute the steering heading, with
(8) and (9) using wallb a= and /2Threshold r= . On our
system, the value of 2 m worked well for _Wall lead.

The Cul-De-Sac FSM
After completing the algorithmic behaviors, students
only needed to add state transitions to the FSM to solve

the cul-de-sac problem, as shown in Figure 6. Both the
blended go-to goal and wall-following functions have ini-
tialization states that save the distance to the goal in a
make-progress action engine. Making progress is defined
as the current distance to the goal being within 10 cm of
the previous nearest position to the goal. The wall-fol-
lowing initialization state also determines if the goal, and
thus also the wall, is to the left or right of the robot. After
students successfully demonstrated their program to
solve the cul-de-sac problem, they consistently expressed
a sense of accomplishment for writing a fairly challenging
autonomous mobile robot program. A short video of a
robot going to a goal while avoiding a cul-de-sac obstacle
may be viewed online at https://www.youtube.com/
watch?v=OyqRtPnqP7w.

References
[1] R. Zajac, “Mentoring middle school NXT robotics: Math develop-
ment as a primary design constraint,” presented at Proc. ASEE Midwest
Section Conf., Salina, KS, 2013.
[2] National Instruments. (2015). NI LabVIEW Robotics Starter Kit Web-
site. [Online]. Available: http://www.ni.com/datasheet/pdf/en/ds-217
[3] T. Bress, Effective LabVIEW programming. Allendale, NJ: NTS
Press, 2013.
[4] R. Bitter, LabVIEW advanced programming techniques. Boca Raton,
FL: CRC Press/Taylor & Francis, 2007.
[5] National Instruments. (2013). What is LabVIEW? [Online]. Avail-
able: http://www.ni.com/newsletter/51141/en/
[6] K. J. Aström and R. M. Murray, Feedback Systems: An Introduction for
Scientists and Engineers. Princeton, NJ: Princeton Univ. Press, 2012.
[7] E. Olson. (2005). A Primer on Odometry and Motor Control. [Online].
Available: http://web.mit.edu/6.186/2006/doc/odomtutorial/odomtutorial.pdf
[8] J. Pomet, B. Thuilot, G. Bastin, and G. Campion, “A hybrid strategy
for the feedback stabilization of nonholonomic mobile robots,” in Proc.
IEEE Int. Conf. Robotics and Automation, Nice, France, May 1992,
pp. 129–134.
[9] K. Amar and S. Mohamed, “Stabilized feedback control of unicycle
mobile robots,” Int. J. Advanced Robotic Syst., vol. 10, no. 187, Apr. 2013.
[10] J. Lawton, B. Young, and R. Beard, “A decentralized approach to ele-
mentary formation maneuvers,” in Proc. IEEE Int. Conf. Robotics and
Automation, San Francisco, Apr. 2000, pp. 2728–2733.
[11] P. Ögren, “Formations and obstacle avoidance in mobile robot con-
trol,” Ph.D. dissertation, Roy. Inst. Technol., Stockholm, Sweden, 2003.
[12] M. Egerstedt. (2014) Control of Mobile Robots, Lecture 7.4: A Clever Trick
[Online]. Available: https://class.coursera.org/conrob-002/wiki/Week7a
[13] T. Bower. (2015). Robotics Programming Study Guide: A Clever Trig-
onometry-Based Controller. [Online]. Available: http://faculty.
salina.k-state.edu/tim/robotics_ sg/Control/controllers/trig_ trick.html
[14] K. Agarwal, S. Mahtab, S. Bandyopadhyay, and S. Das Gupta, “A pro-
portional-integral-derivative control scheme of mobile robotic platforms
using matlab,” IOSR J. Elect. Electron. Eng., vol. 7, pp. 32–39, Oct. 2013.

Timothy Bower, associate professor of computer systems
technology, Polytechnic Campus, Kansas State University,
Salina, 67401. E-mail: tim@ksu.edu.
�

Figure 6. State transitions for go-to goal with avoidance of
convex and concave obstacles.

Wall Follow
Init

Blended
Wall Follow

Blended
Go-to-Goal

Go-to-Goal
Init

Stop

Not Making Progress

Start

At Goal

Making Progress
|αao| < π /4

|αg | < π /2

αwall αwall

Figure 5. At the end of a wall, the term y0 modulates the side
length of the abstract triangle and thus the turning heading.

Authorized licensed use limited to: Kansas State University. Downloaded on May 16,2022 at 21:53:52 UTC from IEEE Xplore. Restrictions apply.

