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T
his article considers strategies for teaching 
beginning students how to program mobile robots 
for autonomous operation. Many high school and 
beginning undergraduate students desire to learn 
about robotics, but they may lack the required 

knowledge. Experiences from an undergraduate course are 
described to illustrate the robot, its programming 
environment, software design, and algorithms, which faculty 
can use to guide beginning students from a place of no prior 
experience to writing impressive, autonomous mobile-robot 
programs. Autonomous algorithms that perform well and are 
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appropriate for beginning students, including a new  
wall-following algorithm, are reviewed.

Robotics has become quite popular in education. As the 
potential for applying robotics to meet real needs expands 
with the maturation of the technology, so too has interest 
in learning about robotics. Students of all ages and educa-
tional levels want to learn how to build and program 
robots. The cross-discipline nature of robotics makes it 
ideal for youths to explore career possibilities in science, 
technology, engineering, and mathematics (STEM). 
Affordable hardware options abound for the beginning 
student wishing to build a simple robot. Sufficient docu-
mentation for learning to write a program for the manual 
operation of robots is also available. Thus, a lack of prior 
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knowledge does not need to prevent students at any age or 
educational level from pursuing their interest in robotics.

The beginning student’s lack of preparation, however, could 
become a problem when it comes to writing programs to 

implement autonomous 
algorithms. Beginning stu-
dents may not have a suffi-
cient level of programming 
experience or may not be 
prepared to understand 
some of the mathematics 
of autonomous algorithms. 
Thus, the robotics pro-
gramming instructor has a 
challenge. To be successful, 
the instructor must chal-
lenge beginning students 
to learn new concepts that 
are appropriate to their 
educational level and to 
exercise their problem 

solving skills. Zajac [1] points out that mentors and teachers 
of young and underprepared students must continually 
hover at the boundary between two states: 1) providing too 
much assistance in solving problems and 2) providing too 
little assistance. Students should learn to appreciate the com-
plexities of autonomous algorithms, yet they should also 
find personal success from implementing simpler algo-
rithms. This article aims to highlight some of the program-
ming and algorithmic solutions appropriate for introducing 
beginning students to autonomous robot programming.

A new course in robotics programming was recently 
developed at the polytechnic campus of Kansas State Univer-
sity. To allow lower-level undergraduate students to take the 
course, the prerequisites were limited to a programming 
course and trigonometry. Based on experiences from the first 
two offerings of the course, matters related to the robot, the 
programming environment, software design, and algorithms 
for introducing beginning students to autonomous mobile-

robot programming are considered in this article. Students 
began the course by writing a sequence of fairly simple pro-
grams to operate and test the robot’s motors and sensors. As 
the students learned about robotics, they also learned how to 
program with LabVIEW. LabVIEW is a trademark of 
National Instruments (NI) [2], [5]. Later, network program-
ming was used to couple the robot program with a program 
developed to run on a host computer. Autonomous algo-
rithms could then be studied and implemented. By the end 
of the semester, each student wrote a program to move the 
robot to a goal location while avoiding convex and concave 
obstacles and also completed a self-determined final project. 
Avoidance of a large concave obstacle, which was referred to 
as the cul-de-sac problem, proved to be an interesting and 
challenging assignment for the students.

The Development Environment
Because the focus here is on programming robots, it is impor-
tant that students are able to write robot programs without 
delay. For this to happen, a prebuilt, dependable robot is need-
ed as well as a programming environment where it is easy to 
develop, download, run, and debug robot programs. The NI 
LabVIEW Robotics Starter Kit, also called the DaNI Robot, 
was used [2] (see Figure 1). Using this environment, students 
were writing robot code by the second week of the semester.

The DaNI Robot Platform
The DaNI Robot uses an NI single-board reconfigurable 
input/output-embedded controller which has a real-time pro-
cessor, a user-reconfigurable field-programmable gate array 
(FPGA), and input/output (I/O) on a single circuit board. The 
robot’s built-in motors and sensors are controlled through the 
FPGA. Additional I/O ports for analog and digital I/O and 
pulse width modulation are available if needed. An ethernet 
port is used for communication between the robot and a host 
control computer. For wireless communication, a Wi-Fi 
bridge with an external battery pack is attached to the robot. 
The robot uses two 4-in wheels in a directional drive configu-
ration with a trailing omni-wheel. Wheel rotation is measured 
with optical quadrature encoders. The distance to objects is 
measured with an ultrasonic sensor that is mounted to a 
servo motor so that the sensor can rotate from side to side.

The LabVIEW Environment
LabVIEW is a graphical programming environment. It 
uses a graphical model for expressing program logic on 
block diagrams. Graphical capabilities are also employed 
for building user interfaces. Each function in a program, 
which is called a virtual instrument (VI), consists of a 
block diagram and a front panel. Some VIs only need a 
simple front panel to connect the VI’s input and output 
terminals to the block diagram. Other VIs may use a 
front panel with a graphical user interface and a variety 
of meters and graphs. LabVIEW’s simple programming 
model and graphical capabilities make it a well-suited 
environment for rapid prototyping and data visualization.

Figure 1. The LabVIEW Robotics Starter Kit, also called the DaNI 
Robot. (Photo courtesy of National Instruments.)

LabVIEW’s simple 

programming model and 

graphical capabilities 
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environment for rapid 

prototyping and data 
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A less obvious but important feature of LabVIEW is 
that it uses a data-flow model for sequencing the execu-
tion of code. This means that a node on a block diagram 
will execute when data for all of the node’s input terminals 
are available. Nodes are often arranged in a sequential 
data path where an output from a node is an input to 
another node; thus, the second node cannot execute until 
the first node is finished and the data are passed along. 
However, the sequence of execution for parallel nodes is 
indeterminate. This behavior occasionally requires special 
consideration by the programmer; however, capabilities 
are provided to control the execution order when needed. 
The advantage of the data-flow model is that it allows 
LabVIEW to be inherently parallel. When code elements 
and loops are not in a sequential data path, they can be 
considered to run as parallel threads of execution.

LabVIEW provides convenient capabilities to synchro-
nize access to critical code sections and to exchange data 
between parallel threads. The following are two ways syn-
chronization facilities can be used in robotics programming.

●● �Both the robot and the host controller programs use 
parallel loops. Various loops generate messages to be 
sent over the network. The built-in queue facility pro-
vides a convenient mechanism for combining the mes-
sages into one data stream. Another loop takes messages 
from the queue and sends them over the network.

●● �The action engine provides a simple mechanism to syn-
chronize access to critical code sections and to exchange 
data between threads. An action engine is a VI that can 
store data using either feedback nodes or uninitialized 
shift registers. A case structure is used with an enumera-
tor input to the VI for selecting actions to perform when 
the VI is invoked. Because VIs are, by default, nonreen-
trant (mutual exclusion), instances of the same action 
engine VI may be placed in parallel threads to safely 
share data or access a critical section [3].
As messages from the robot containing sensor data are 

received, the host controller can use action engines to 
make calculations and save the data. The autonomous 
algorithms safely read the data from the action engines as 
needed. The simplicity of developing programs with par-
allel threads of execution makes LabVIEW ideal for 
robotics and especially for teaching robotics program-
ming to beginning students [3], [4]. In the robotics 
programming class, LabVIEW provided a gentle intro-
duction to parallel programming concepts that would 
benefit the students in more advanced programming 
classes. LabVIEW can be viewed as a programming lan-
guage, but it is really an integrated development environ-
ment [5]. LabVIEW makes it easy to program, deploy, 
and debug robot programs.

LabVIEW Robot Programs
There are two distinct modes for operating robots with 
LabVIEW. The first mode is useful for debugging pro-
grams, is simple to use, and provides students with a 

convenient mechanism to learn about robot motors and 
sensors. However, it does not have the real-time perfor-
mance and program modularity of the second mode. The 
second mode requires more effort, but results in a better 
framework for running autonomous programs.

LabVIEW Interactive Mode
When a program intended for a robot platform is initiated 
on a computer, the robot code is downloaded to the robot 
and runs. In this mode, the robot is controlled from the com-
puter, and any robot data may be viewed from the computer. 
This mode has a lot of value for educational and debugging 
purposes. However, LabVIEW on the computer and on the 
robot are coordinating extensively, using resources of the 
robot central processing unit and the network.

Networked Standalone Mode
A LabVIEW program may be compiled and downloaded 
to the robot to run as a start-up program. Such a program 
could run as an autonomous application with no interac-
tion with a host controller. However, a purely standalone 
program has limited functionality. Networking code 
should be added to the application so that the robot com-
municates with a host controller program that is running 
on a computer. The host controller allows a user to con-
trol the robot and can also provide another processing 
resource to augment the robot processor.

In the robotics programming course, the interactive 
mode was initially used for a sequence of programming 
and experimentation assignments. In addition to learning 
about robotics hardware, students developed programs 
that implemented major algorithmic components for the 
programs to be developed later in the semester. The reuse 
of code made the more complex assignments seem less 
daunting and more like incremental assignments. In the 
early assignments, students developed the code to drive 
the robot and to operate the servo motor and ultrasound 
sensor to collect data for avoiding obstacles. After an intro-
duction to network programming, a framework for future 
assignments was developed based on the networked stand-
alone mode. To allow immediate sending of data, two TCP 
connections are made, each used for sending data in one 
direction. The robot acts as the server waiting for connec-
tions from a host controller.

In the first course offering, the host controller only 
gave operating instructions to the robot. However, in the 
second course offering, the controller also performed the 
algorithmic computations. Thus, the robot ran a simple 
program to control its hardware while taking driving 
directions from the controller and returning sensor data. 
Shifting algorithmic processing from the robot to the 
computer offered performance benefits and made pro-
gram development easier due to the computer’s faster 
processing capability. All students used the same message-
passing application programming interface between the 
robot and host controller, so it was not necessary to make 

Authorized licensed use limited to: Kansas State University. Downloaded on May 16,2022 at 21:53:52 UTC from IEEE Xplore.  Restrictions apply. 



70 •  IEEE ROBOTICS & AUTOMATION MAGAZINE  •  june 2016

any changes to the robot as each student tested his or 
her program.

After the program-
ming efforts switched 
from developing pro-
grams to run on the 
robot to programming 
the host controller, the 
lectures and assignments 
shifted to autonomous 
algorithms. Students de
veloped a sequence of 
autonomous behaviors 
for the go-to goal with-
out obstacle avoidance, 
the go-to goal  with 
avoidance of convex 
obstacles, wall following, 
and the cul-de-sac prob-

lem. With the exception of a few introductory assign-
ments, each programming assignment contributed code 
that was used in the solution to the cul-de-sac problem, 
shown in Figure 2.

Autonomous Algorithms
Autonomous behaviors often have multiple solutions. So, 
in an introductory course, the instructor might discuss 
more than one algorithm capable of producing a desired 
behavior, but direct students to implement algorithms 
that yield acceptable behavior with concepts appropriate 
to the students’ educational level. Except for wall follow-
ing, all of the algorithms used in the robotics program-
ming course may be found in literature. In the case of 
wall following, a new algorithm was developed that was 
simple for students to understand and implement, yet 
performed well.

A Comment on PID Controllers
The proportional–integral–derivative (PID) feedback-con-
trol system is certainly one of the most important control 
algorithms used in robotics [6]. PID controllers were dis-
cussed in a lecture of the introductory course on robotics 
programming. However, because the focus of the course is 
on programming rather than control theory, it was felt that 
tuning the PID controllers would introduce challenges that 
are not appropriate for the objectives of the course.

Odometry
Early in the semester, students learned to read odometry 
data from the optical encoders and convert the data to lin-
ear distance traveled within a time interval. Initially, they 
used the odometry data to track the robot position on the 
robot platform. Later in the semester, the data were sent to 
the host controller for processing. The robot’s location and 
orientation in the global coordinate frame is called the 
pose of the robot. The robot’s pose consists of its x and y 
location and its angle of orientation, θ

	 .
x
yP
i

= > H

Using the distances traveled by the left and right wheels 
within an interval of time, the change to the robot’s pose is 
calculated using established equations for the kinematics 
of differential drive robots. Olson provides a nice online 
primer that helps students understand the kinematics 
because it works though the calculations in detail [7].
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Steering the Robot
The right- and left-wheel velocities to steer the robot are 
determined by the desired forward and rotational veloci-
ties, v(t) and ω(t). L is the distance between the wheels in 
meters. The velocities are in units of m/s. The rotational 
velocity, ω, is expressed in rad/s

	 ,v v L
2r
~= + � (4)

	 .v v L
2l
~= - � (5)

However, the rotational velocity is not usually a given for 
steering the robot. Steering is specified by a desired head-
ing, ( )tz  in the global coordinate frame or ( )ta z i= -  

Figure 2. The cul-de-sac problem uses a large concave obstacle. 
Once inside the cul-de-sac, the robot must temporarily move 
away from the goal to get out of the cul-de-sac.
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in the robot’s local coordinate frame, and a forward veloc-
ity, V. This is commonly called the unicyle model, which is 
expressed as a velocity vector in the global coordinate 
frame, U. The steering controller needs to accept U  as 
its input and provide (v, ω) as output.

PID Tracking
When the robot’s pose is calculated, the point, X, halfway 
between the drive wheels is used, which moves in-line 
with the wheels, but not perpendicular to the wheels. 
Thus it is not possible to directly determine (v, ω) using 
the velocity vector for X

	 .
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So, the common solution is to regulate ω with a PID con-
troller: ( )PID~ a z i= = - . The wheel velocities can 
then be calculated from (4) and (5).

Direct Calculation
It is possible for a steering controller to directly calculate 
reasonable values for (v, ω) from U. Instead of basing the 
kinematic analysis on the point X, a new point is used that 
is positioned a small distance, l, directly in front of X, 

( , )cos sinX x l y li i= + +u . This new point, Xu , can move 
in line with and perpendicular to the wheels. So a control-
ler can be designed to satisfy XU = uo .
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Applying (4) and (5) yields the wheel velocities. Recall that 
a z i= - , which is the steering heading in the robot’s coor-
dinate frame

	 ( ),cos sinv V Kr a a= + � (6)

	 ( ) .cos sinv V Kl a a= - � (7)

The variable ( / )L lK 2=  can be regarded as a single tunable 
parameter. With K = 0.66, our robots demonstrated respon-
sive, yet smooth and stable steering. The kinematics of an 
alternate point Xu  are discussed in [8]–[10] and applied to 
directional drive robots in [11] and [12]. The online study 
guide used with the robotics programming class shows 

more detailed analysis of the controller [13]. The students 
were able to understand most of the math involved in the 
derivation of the controller equations. They certainly 
appreciated using a steering controller with a simple, direct 
calculation and only one tunable parameter.

Obstacle Avoidance
The obstacle-avoidance algorithm used a simple sum of 
vectors as described in [14]. Using only one ultrasound 
sensor required refinements to the algorithm, which the 
students designed. The servo motor rotates side to side 
stopping at fixed positions where ultrasound measurements 
are taken. The ultra-
sound data represent the 
distance in meters to any 
object detected. When 
no object is detected, the 
maximum range of the 
sensor (3 m) is used.

Ultrasound measure-
ments are taken at angles 
of {–1.5, –1, –0.5, 0, 0.5, 
1, 1.5} rad. Using the 
measurements as vec-
tors, the sum of the vec-
tors is calculated to yield the “avoid-obstacle” heading 
(see Figure 3). Due to the symmetry of the measurement 
angles, αao = 0, when no obstacles are detected, shorter 
vectors from obstacle detection cause the sum of vectors 
to deflect away from the obstacle. The simple sum of vec-
tors from the ultrasound data was a good start, but the 
resulting heading was not adequate. This provided an 

Figure 3. The sum of ultrasound measurement vectors yields the 
“avoid-obstacle” heading, aao.

αao
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opportunity for the students to observe, analyze, and col-
laborate to find solutions:

●● It detects objects to the side that pose no collision threat.
•• �The solution was to limit the lengths of the ultra-

sound data linearly by measurement angle so that 
forward measurements have greater range than side 
measurements.

●● �The sum of the vectors always points forward and does not 
adequately deflect away from obstacles.
•• �The solution was to shift each vector in the opposite 

direction. Thus, detected obstacles can result in nega-
tive vectors. A panic element to the shift was also 
adopted to give larger negative vectors in the event of 
a near collision.

Autonomous 
Behaviors
One of the parallel execut-
ing loops of the host con-
troller program contains a 
finite state machine (FSM) 
where the robot’s algorith-
mic behaviors are imple-
mented. With each loop 
iteration, an updated 
heading and velocity is 
calculated so that the 
robot drives according 
to a specified behavior. 

The FSM is a natural construct for implementing autono-
mous behaviors. Implementing the FSM was also a valu-
able educational experience for the students.

Blending Headings
In both the go-to goal and wall-following behaviors with 
obstacle avoidance, the final steering heading is a blended 
combination of two angles: αao for avoid-obstacle and β 
for the behavior component. When there is little threat of 
a collision, | | 0ao .a  and the behavior component domi-
nate. When the risk of a collision is increased, | |aoa  
becomes larger and the robot is diverted. We define a 
weighting variable, h:

	
| | | | ,h
1

if
otherwise

Threshold Thresholdao
ao 1

a
a= * � (8)

	 ( ) · .h h1· aoa a b= + - � (9)

Pure obstacle avoidance, aoa a= , occurs when | |ao $a  
Threshold. The Threshold is a tunable parameter for 
each behavior.

Go-To Goal
The go-to goal behavior uses the robot’s pose and the 
location of a goal. A simple trigonometry calculation 
provides the direction to the goal, gz . The robot heading 
is then simply g ga z i= - . Adding blended obstacle 
avoidance simply requires using the VI to compute the 
steering heading with (8) and (9) using gb a=  and 

/4Threshold r= . The only difficulty that any students 
had with this quick assignment was making sure that the 
robot stopped at the goal.

Wall Following
Autonomous controlled mobile robots require a wall-fol-
lowing behavior to maneuver around large concave obsta-
cles. Convex obstacles may be avoided using a blended 
go-to goal with avoid-obstacle behavior. However, when 
inside a large concave obstacle, such as a cul-de-sac, the 
go-to goal-based behavior causes the robot to become 
stuck in a local minimum, where it wanders in the cul-de-
sac but refuses to drive away from the goal as is needed to 
exit the cul-de-sac. When a wall-following behavior is 
used, the robot can follow the contours of the obstacle to 
move around it and then proceed toward the goal location. 
The algorithm used to achieve wall-following behavior 
uses the blended avoid-obstacle concept along with a 
behavioral heading, αwall, which follows the contours of 
the wall. The algorithm for computing the behavioral 
heading was original. It was developed specifically to be a 
simple algorithm for students to understand and imple-
ment. Despite its simplicity, the overall algorithm has dem-
onstrated good performance for the intended application.

The behavioral heading calculation uses an abstract right 
triangle, shown in Figure 4. The side lengths of the triangle 
derive from the first two ultrasound measurements from the 
side of the robot facing the wall. The wall-following heading 
is then simply an angle calculation from the triangle. Using 
the known measurement angles, the first two measurements 
are converted to points in the robot’s local coordinate frame. 
The wall-following heading is given by
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The relationship of |y1| to Dwall reports the robot’s current 
position relative to what is detected about the approaching 

Figure 4. An abstract right triangle for computing the wall-following 
heading.
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contour of the wall. The x1 and _Wall lead terms serve as 
damping factors in the equation. The |y0| term strongly 
influences the heading when the wall ends or turns away 
from the robot; see Figure 5.

The wall-following heading and the avoid-obstacle head-
ing complement each other. The wall-following component is 
most adept at keeping the robot from getting too far from the 
wall and induces the turning when the wall turns away from 
the robot. Conversely, the avoid-obstacle heading diverts the 
robot when it or its projected path is too close to the wall. The 
steady-state distance from the wall is where the wall-following 
and avoid-obstacle headings offset. On our system, Dwall was 
set at 0.4 m, and the robot tracked walls at a range of approxi-
mately 0.5 m. Adding the blended obstacle avoidance simply 
requires the use of VI to compute the steering heading, with 
(8) and (9) using wallb a=  and /2Threshold r= . On our 
system, the value of 2 m worked well for _Wall lead.

The Cul-De-Sac FSM
After completing the algorithmic behaviors, students 
only needed to add state transitions to the FSM to solve 

the cul-de-sac problem, as shown in Figure 6. Both the 
blended go-to goal and wall-following functions have ini-
tialization states that save the distance to the goal in a 
make-progress action engine. Making progress is defined 
as the current distance to the goal being within 10 cm of 
the previous nearest position to the goal. The wall-fol-
lowing initialization state also determines if the goal, and 
thus also the wall, is to the left or right of the robot. After 
students successfully demonstrated their program to 
solve the cul-de-sac problem, they consistently expressed 
a sense of accomplishment for writing a fairly challenging 
autonomous mobile robot program. A short video of a 
robot going to a goal while avoiding a cul-de-sac obstacle 
may be viewed online at  https://www.youtube.com/
watch?v=OyqRtPnqP7w.
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Figure 6. State transitions for go-to goal with avoidance of 
convex and concave obstacles.
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Figure 5. At the end of a wall, the term y0 modulates the side 
length of the abstract triangle and thus the turning heading.
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