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Using Linux Kernel Modules for Operating Systems Class Projects 
 

 
Abstract 
 
Instructors of operating systems classes have long desired to incorporate programming projects 
into the class that will give the students an appreciation for the source code of the kernel of a real 
operating system.  Unfortunately, this lofty goal becomes difficult to effectively implement in 
practice.  This paper reviews several approaches and environments for operating systems 
programming projects.  A new approach involving Linux kernel modules and source code 
reading is described as a means to supplement other programming projects. 
 
Introduction 

 
In an operating systems class, we want students to gain an understanding of the internal data 
structures and algorithms used in real operating systems.  As such, operating systems classes 
always include a heavy lecture component to expound on such topics as common operating 
systems architectures, device and I/O management, process management, memory management, 
synchronization, and file system management.  However, lectures alone are not able to illustrate 
these principles in action.  Students need some form of personal exploration to investigate how 
the concepts and algorithms are implemented.  The logical solution is that students should study 
the source code of real operating systems and modify or instrument the source code to allow for 
closer understanding. 

 
Unfortunately, operating systems class projects which use real operating system kernel code 
present many challenges.  First of all, not all operating systems have source code available.  
Only open source operating systems such as Linux, MINIX and the BSD variants have source 
code available.  Secondly, the source code for a real operating system is huge and formidable.  It 
is challenging for even experienced programmers to wade through the volume of code to find the 
code related to the implementation of some algorithm, modify the algorithm such that the 
operating system still works and provides interesting insights about the operating system design 
and implementation.  For a beginning programmer, it would be more frustrating than instructive.  
Thirdly, it can be administratively difficult to allow students to modify the kernel of an operating 
system.  The process of compiling and installing a new kernel to support the wide variety of 
hardware and options that modern operating systems support is difficult and time consuming.  It 
requires root level privileges; and worst of all, it risks damaging the installed system. 
 
Modern Linux systems support a mechanism called loadable kernel modules that offer an 
interesting alternative.  Kernel modules effectively allow for an addition to a running kernel in 
real time.  The code for the kernel module must include a few basic components to facilitate the 
loading and removing of the module, but can be a fairly small and simple program.  An obvious 
advantage is that students only need to work on and modify a small amount of code, which is 
isolated from the kernel’s source code.  When the module is loaded, it is linked to the executing 
kernel image, as if it were part of it from when the computer was first booted.  Kernel modules 
cannot modify or replace existing functions in the kernel, but can add new functionality and can 
read and modify, if needed, any exported global variables and data structures.  The ability to 
read the kernel’s global data makes them ideal for student projects that examine global data 



structures to more closely observe the behavior of the operating system.  These projects typically 
only read the data, so the stability of the system is maintained. 
 
With the introduction of the bachelor degree in Computer Systems Technology, Kansas State 
University at Salina offered an operating systems class for the first time in the fall 2004 
semester.  From the initial planning of the class, the laboratory programming projects were a 
primary concern.  It was felt that programming projects using real operating systems would be 
perceived as more relevant and useful to students than projects which use a simulation 
environment.  It was felt that the lab activities should involve some level of programming.  
However, it was desired to not have open ended programming assignments that would frustrate 
students, especially those with limited experience with Unix/Linux and programming in C.  The 
primary programming experience of the expected student population was known to be with Java, 
Visual Basic and some C++ in a Windows environment.  However, it was felt that exposing 
students to C and Unix/Linux would be a valuable addition to their educational experience.  To 
cover the most material with lab activities, a preference was to have several small projects rather 
than a few larger projects.  During the first semester the course was offered, two projects using 
Linux kernel modules were used.  The idea for using Linux kernel modules started with a 
suggested lab assignment from Gary Nutt’s book on kernel project’s for Linux.

6
  The lab 

introducing students to Linux kernel modules was enhanced with information from the Linux 
Kernel Module Programming Guide,

1
 which is available on the Internet.  Based on information 

available in the Linux Kernel Module Programming Guide, a device driver lab was also 
developed.  For the second semester that the course was offered, in the fall 2005 semester, it was 
decided to take advantage of the kernel module’s ability to read global data, so additional 
projects were developed which dealt with process control blocks and virtual memory 
management.  
 
The Nature of Common OS Projects 
 
Operating systems class projects usually fall into one of three categories: 

1. Projects based on modifying the actual kernel of an operating system. 
2. Projects where student write programs that run as user processes. 
3. Projects using an operating system simulation environment. 

 
Kernel Projects 
As previously mentioned, projects based on modifying the source code of an operating system 
are ideal in terms of learning about the implementation of real operating systems, but are not the 
most practical.  The primary downsides can be the programming difficulty of the projects and 
the administrative difficulties associated with compiling, installing and testing the compiled 
kernels on laboratory computers.  As Nutt points out, when working with actual kernel source 
code, there is only time in a semester for a few projects.

6
  The actual number of projects that can 

be completed in a semester would vary depending on the students' level of experience with 
programming in C and assembly language and working with Unix/Linux. 
 
Perhaps the best resource for Linux based kernel projects is from Nutt's book.

6 

 
The MINIX operating system was designed specifically as a learning operating system.  As such, 
it is significantly smaller and more manageable than other open source operating systems.  
MINIX is small enough that a compiled kernel can fit on a single floppy disk, which greatly 



simplifies the administrative issues associated with booting the student compiled kernels. 
Tanenbaum’s classic operating systems text book includes the full MINIX source code.

9
   

Unfortunately, MINIX source code, although smaller in size, is still quite difficult for beginning 
programmers and requires knowledge of both C and assembly language.  MINIX also lacks the 
conveniences of a graphical user interface, which makes it more difficult for students with 
limited Unix experience to use.  
 
In general, projects that modify source code of an actual operating system are not practical for a 
first operating systems class.  In the preface of Nutt's operating systems text book,

 
he reports that 

this was the unanimous opinion of operating systems instructors at a 1999 Operating Systems 
Design and Implementation meeting.

7
  Linux kernel modules, however, offer a limited 

experience of working with real operating system source code that is practical for a first 
operating systems class. 
 
User Space Projects 
As Nutt points out, offering students the external view of real operating systems is the approach 
in the ACM/IEEE 2001 curriculum recommendation for first semester operating systems 
classes.

7
  The approach here is to ask students to write user space programs in either Unix or 

Windows that will allow students to gain insight in the way the kernel works by using the 
facilities of the operating system, rather than modifying them.  Several operating systems text 
books, such as Nutt's text

7
, offer several suggested projects.  Downey also offers suggestions on 

some interesting projects which focus on students using design concepts to execute the projects.
3 

 
These lab exercises clearly offer some value to the student and are much more manageable for 
the instructor than projects based on the internal view of operating systems. The obvious failing 
of this approach is that it does not show the students much about the implementation of real 
operating systems. 
 
Simulation Environment Projects 
Strictly speaking, this is a subset of user space projects because students write programs that run 
as user processes.  A distinction is made because these projects focus on simulating a simplified 
operating system rather than exercising the operating system being used to run the program.  
Several environments have been developed to provide a framework for such projects.  The most 
commonly used simulation environments seem to be Operating Systems Projects (OSP)

5
, 

Nachos, and Ben-Ari Concurrent Interpreter (BACI)
2
.  Appendix C of Stallings’ text book offers 

a comparison of the various features of these environments.
8
  Hu also describes an environment 

called Alchemy which offers some nice features.
4 

 

The basic approach is that the various parts of an operating system (CPU / process management, 
memory management, synchronization, and I/O management) are implemented as separate 
modules of a discrete time simulation.  The instructor will typically remove part of the source 
code of one of the modules and provide the other modules as pre-compiled object code.  The 
students must write the missing code for the module under study, compile the module and link it 
to the rest of the object code.  When run, the correctness of the student's implementation is 
verified.  Statistical data regarding the performance of the simulated operating system may also 
be calculated and reported. 
 



The most compelling advantage of this approach is that students are allowed to implement the 
lowest level functionality of an operating system such as the process scheduler and virtual 
memory system.  The approach also demonstrates how the implementation of various algorithms 
can impact the performance of the system. The drawback is that the system studied is not a real 
operating system.  The students' code must account for the execution of the simulation rather 
than actual functioning of the operating system.  Thus students are left to wonder how the code 
they wrote would compare to real operating system code. 
 
As many instructors have observed first hand, these simulation environments are easier to work 
with than actual kernel code, but they still can be difficult for students to master.

3, 4, 8 

 
Linux Kernel Modules 
 
As previously described, Linux kernel modules add to the functionality of a running Linux 
system.  The common use of kernel modules in a Linux system is as device drivers.  The kernel 
need not be compiled to support all the devices which might be present in a machine.  The 
drivers for the hardware in the machine can be loaded when the system is first booted or as 
needed.   
 
The most common way for users to invoke the kernel module code is with a read or write request 
of a special file.  Special device driver files are an example of a file which can be used to invoke 
kernel module code.  Another example of files that can invoke kernel module code when read 

are the files under the /proc directory.  Linux maintains a file system (/proc) of files which 

when read will report various information from the kernel’s global data.  These are not actual 

files on the hard drive but are virtual files.  When one of these files is read, (cat /proc/foo, 

for example) the read()system call invokes the appropriate kernel function to return the 

requested information in the same manner as it would invoke a function from the file system 
manager to read an actual file.  The system has several such files by default, but a Linux kernel 

module can also create a new file under the /proc file system and provide the necessary read 

function.  When invoked, the read function can report the value of global variables and data 

structures and any other desired information using a sequence of sprintf() function calls to 

write formatted string data to a buffer for eventual output.   
 
The kernel module must include a small amount of “boiler plate” code to be executed when the 
module is installed and removed.  This code is supplied to the students for most projects.  For 
most projects, the main task of the student is to provide the read function which will report 
various global kernel data.  The device driver project also asks students to study and modify 

code associated with open(), close(), write() and ioctl() system calls.  To complete 

the projects, the students must gain an understanding of the data structures used in the kernel.  In 
some cases, they also must make kernel function calls to obtain the data needed.  For many 
projects, students also supplement the kernel module code by writing user space programs that 
cause the kernel's global data to reveal interesting insights about the functioning of the operating 
system. 
 
Projects 
 
In the second offering of the operating systems class at Kansas State University – Salina,  the 
first two programming projects were user space projects designed to establish a minimal level of 



competency with C and Unix and to establish basic concepts which would be used in later 
projects.  Four projects involving Linux kernel modules were used.    
 

The first project is to develop a simple shell using the fork() and execv() system calls to 

learn about process creation.  This is Lab 2.1 as described in Nutt's text book.
7 

 
The second project is to write a program that reports the behavior of the system from the various 

files in the /proc file system.  This project establishes an understanding of /proc files which 

are used in the kernel module projects.  This is Lab 3.1 as described in Nutt's text book.
7 

 
The third project introduces Linux kernel modules.  Using example programs available from the 
Linux Kernel Module Programming Guide

1
, a sequence of simple modules are explored.  The 

emphasis here is on understanding how kernel modules work and on working with the Linux 
system to compile, install, use and remove the modules.  The first module is a simple “hello 
world” type program that students just install and remove while monitoring the system log file 

(/var/log/messages).  The second module creates a read only /proc file.  The source 

code for the first two modules is provided to the students.  The third module asks the students to 

write a kernel module that reports the value of a global variable (xtime).  The third module is 

the same as project four in Nutt's Linux kernel projects book.
6
  However, after the students have 

studied the first two modules, the third module is a simple program to write.  Finally, the 
students are asked to write a user space program to compare the system time returned from the 

gettimeofday() system call to the xtime global variable reported by the kernel module.  

 
The fourth project deals with device drivers.  The students expressed that they had a high interest 
in this lab because a device driver is something that they can visualize themselves developing at 
some time in their careers.  Again, the students begin by looking at a sequence of modules 
obtained from the Linux Kernel Module Programming Guide.

1
  The device studied here is a 

pseudo-device – a character device created in memory, rather than a physical hardware device.  
The first module creates a read only device.  The next module creates a FIFO queue device that 
can be written to and read from.  The second module also includes a function to be invoked from 

an ioctl() system call.  The students are asked to write a small user program using ioctl() 

to exercise this part of device driver.  The source code for the first two kernel modules is 
provided to the students.  For the third module, the students are asked to modify the behavior of 
the second module such that if the device was written to consecutively, the subsequent writes 
would append to the queue rather than overwrite it.  They are to implement this functionality 
using circular buffer.  Largely because of a lack of experience with working with pointers in C, 
some students find this part of the project to be fairly difficult.  For the fourth module, students 
are asked to modify the previous module to create a device driver that blocks the process using a 
wait queue when a process attempts to open a driver that is already in use, rather than exiting 
with an error code.  The details of how to do this are shown in chapter nine of the Linux Kernel 
Module Programming Guilde.

1
  So while this part of the project requires more difficult 

programming, an example is available to guide the students. 
 
The fifth project relates to the process management discussion in the lecture part of the class.  

Students write their own kernel module to create a read only /proc file that reports data from 

the process control block data structures (struct task).  The data reported for each process 

is similar to that of the Unix “ps –f” command with the addition of also reporting the state of 

each process.  In addition to reporting data from the task data structure, students also use 



linked lists to traverse the active processes.   In the first pass, the module starts with the current 

process and follows the line of parent processes until the init process is reached.   In the 

second pass through the active processes, the module looks at every process, but only reports 
data for processes which are not in the INTERRUPTIBLE state.  To show at least one process, 
other than the current process, in an interesting state, students also write a simple program that 
creates a zombie process. 
 
The sixth lab deals with virtual memory management.  Students write their own kernel module 
to report on the virtual and physical memory used by the current process.  The virtual memory 
used by the process is readily available from data structures pointed to by a variable in the 

current task data structure.  Determining the physical memory used is a little more difficult 

because the page map tables must be read to translate virtual memory addresses to physical 
memory addresses.  In some cases, the memory page containing the requested memory is not in 
physical memory but is swapped out to the disk.  The kernel function calls that can be used to 
read the page map tables are pointed out to the students, but they must still write the code 

themselves to read the tables.  Students also write a user space program that reads the /proc 

file, allocates a large amount of memory and reads the /proc file again and finally releases the 

allocated memory and once more reads the /proc file.  From this exercise, they can see the 

dynamic nature of the page map tables and see how the system responds to page faults by 
moving memory pages out to the swap disk. 
 
Other Projects Using Linux Kernel Modules 
 
As was done in the last two labs discussed above, kernel modules can be used to examine any 
global kernel data relevant to whatever part of the operating system is under study. 
 
Although not without compromising the stability and security of a system, it is possible to 
modify system data with a kernel module for educational purposes.  Kernel functions can not be 
replaced with code from a kernel module, but system tables which include pointers to functions 
can be modified.  One example of this is to replace the normal interrupt handler for a given 
hardware interrupt with a function defined in a kernel module.  The Linux Kernel Module 
Programming Guide shows how to replace the keyboard interrupt handler.

1
  This exercise was 

considered at K-State – Salina, but not done for a lack of time. 
 
System calls may also be added or replaced using kernel modules, which greatly expands the 
possibilities for how kernel module code can be invoked form user processes.  Replacing system 
calls could also provide a means for doing some interesting projects.  However, as of the 2.6 

version of the Linux kernel, the sys_call_table is no longer exported.  This means that if 

system calls are to be used in projects, the kernel source code must be modified such that the 

sys_call_table is exported, compiled and the new kernel installed on the machines to be 

used.  The administrative difficulties associated with replacing the kernel on the laboratory 
machines may prevent this option.  Again, the Kernel Module Programming Guide shows an 
example of how to replace a system call with code contained in a kernel module.

1 

 
Administrative and Security Issues 
 

Compiling Linux kernel modules is not an issue.  The make command is used to compile the 

kernel module and link it to the needed object files from the kernel source code.  See the Linux 



Kernel Module Programming Guilde
1
 for an example of how to structure the Makefile.  It is 

necessary that the kernel source code be installed on the Linux system. 
 
Not surprisingly, there are a few administrative issues and security concerns that must be 
addressed in order to allow a class of students to use kernel modules with laboratory machines.  
Root level privileges are needed to install and remove kernel modules.  The device driver project 
also requires root level privileges to create the special device driver files.  Perhaps the largest 
security risk comes from the need to make the device driver files ones that can be written to.  By 

the default, the mknod command creates device driver files that are read only. 

 

The sudo command was used at Kansas State University – Salina to give students limited root 

level privileges to use the commands that are needed to complete the laboratory activities.  With 

the appropriate entry in the sudo configuration file (/etc/sudoers), users can execute a 

specific command with root level privileges.  They are asked to enter their user password to 
complete the requested command, but do not need the root user's password.  So, for example, to 

install a compiled kernel module object file named chardev.ko, a command of “sudo 

/sbin/insmod ./chardev.ko” would be used.  (Note that the .ko extension is used to 

indicate that the file is a kernel object file that has been linked to the needed object files from the 
kernel source code.  The file is still considered an object file, not an executable file.  It only 
becomes part of an executable image when it is loaded and linked in real time to the running 
kernel.) 
 
At Kansas State University – Salina, with the help of a very cooperative systems administration 
staff, the laboratory machines were configured to have the students all use the same login name 
(tc182, which is the lab room number) and password for the purposes of the laboratory activities.  
The most difficult part of the configuration was allowing the students to change the permissions 
of the device driver special files.  For this, the students were required to place their device driver 
file in a special directory.  The machines were further configured to delete all the files in this 

directory when each session ended.  The additions made to the /etc/sudoers file is shown 

below. 
 

tc182   ALL=/sbin/insmod  
tc182   ALL=/sbin/rmmod  
tc182   ALL=/bin/mknod  
tc182   ALL=/bin/chmod go[+-][rwx] /home/tc182/labs/*  
tc182   ALL=/bin/chmod [go][+-][rwx] /home/tc182/labs/*  
tc182   ALL=/bin/chmod go[+-][rwx][rwx] /home/tc182/labs/*  
tc182   ALL=/bin/chmod [go][+-][rwx][rwx] /home/tc182/labs/*  
tc182   ALL=/bin/chmod go[+-][rwx][rwx][rwx] /home/tc182/labs/*  
tc182   ALL=/bin/chmod [go][+-][rwx][rwx][rwx] /home/tc182/labs/*  
tc182   ALL=/bin/chown \:users /home/tc182/labs/*  

 
Teaching Experiences 
 
To successfully complete each project, the students first need to understand the operating system 
concept studied.  They must read and understand any source code provided by the instructor.  
They must also read and understand the Linux kernel source code to understand the data 
structures used and kernel function calls available.  The latter step usually involves a significant 



amount of research into the documentation available on the Internet about the Linux kernel, as 
well as source code reading.  Each project is accompanied by a number of specific questions 
about the source code of the kernel modules and the Linux kernel.  Students are required to write 
a detailed lab report for each project showing their own source code, program output and 
demonstrating an understanding of the topic studied. 
 
The student response to using Linux kernel module projects was fairly positive.  At the end of 
the fall 2005 semester, a survey was conducted to measure student response to the approach.  
Every student responded that they either agreed or strongly agreed with the following 
statements. 

1. Using Linux kernel modules in the lab activities provided a good opportunity to learn 
about operating systems. 

2. I liked the fact that by using Linux kernel modules, we developed code that integrated with 
the kernel of a real operating system. 

3. Enough interesting projects can be done with Linux kernel modules to satisfy the 
laboratory needs for an undergraduate operating systems class. 

 
Surprising information learned from the survey was that they uniformly did not like using Linux 
and that they thought the projects were difficult.  These two responses were probably related to 
each other.  Most of the class had little or no experience with Unix/Linux and found interacting 
with the shell's command line interface to be difficult.  They also had limited prior experience 
using C.  They needed to do independent research and source code reading to be able to write the 
needed source code and answer the required questions.  So from an instructional perspective, the 
negative responses on the student survey about the projects being difficult were not necessarily 
disappointing. 
 
The pedagogical advantages to using Linux kernel modules for operating systems class projects 
include: 

‚ Projects can be closely related to material covered in lectures. 
‚ Several small projects can be completed, rather than only a few large projects. 
‚ Projects are structured and doable for a first operating systems class.  That is not to say 

that students are not challenged, but the volume of code they work on is a manageable size 
and it is clear to them that they are not being asked to work on an open ended 
programming project that is beyond their capability. 

‚ Projects make use of a real operating system which increases the students' perception of 
the projects being relevant.  It also boosts the students' confidence by demonstrating that 
they are capable of working on code which integrates with the rest of the operating system. 

‚ Projects require students to do independent research and source code reading to understand 
the implementation used in a real operating system. 

 
Conclusion 
 
The overall experience of using Linux kernel modules for operating systems class projects was 
quite positive.  Since the class at Kansas State University – Salina has only been offered twice 
and kernel modules were used both semesters, it not possible to fully assess the impact on 
student learning.  As the instructor, it seemed clear that the kernel module projects helped the 
students to understand the material covered in lectures.  The student’s perception of the value of 



kernel module projects was also high.  A plan for a future semester is to combine the use of 
Linux kernel module projects with simulation environment projects. 
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