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Abstract

Current systems for managing workload on clusters of
workstations, particularly those available for Linux-based
(Beowulf) clusters, are typically based on traditional
process-based, coarse-grained parallel and distributed pro-
gramming. The DESPOT project is building a sophisticated
thread-level resource-monitoring system for computational,
storage and network resources based on SGI’s Performance
Co-Pilot (PCP). In this paper we present our architecture
for low-overhead, fine-grained resource-monitoring tools
for network communication, and present our open-source
graphical interfaces to this data. We also present our
scheduling system utilizing this data, with experimental
results indicating the overhead of our system is minimal
while providing significantly better performance than sev-
eral popular scheduling techniques.

1 Introduction

Current systems for managing workload on clusters of
workstations, particularly those available for Linux-based
(Beowulf) clusters, are typically based on traditional
process-based, coarse-grained parallel and distributed pro-
gramming [11, 3]. In addition, most systems do not address
the need for dynamic process migration based on differing
phases of computation. The DESPOT project is building a
sophisticated, thread-level resource-monitoring system for
computational, storage, and network resources. We plan to
use this information in an intelligent scheduling system to
perform adaptive process/thread migration within the clus-
ter. At the National Computational Grid level, we will in-
tegrate our system with meta-computing systems such as
GLOBUS via a link to the Network Weather Service (NWS)
in order to explore new scheduling heuristics based on the

more detailed information provided by DESPOT.

DESPOT
Network

communication
monitor

DESPOT
Thread

resources
monitor

Other PCP
monitors

XML/SNMP

SGI Performance
Co-Pilot (PCP)

Grid
schedulers

DESPOT
cluster monitor

DESPOT-enhanced
job scheduler

Figure 1. DESPOT architecture.

Current systems for monitoring resource usage within a Be-
owulf cluster usually either are message-passing-system de-
pendent, such as LAM for MPI, or, like the SMILE sys-
tem, cannot provide process-to-process communication de-
tails [13, 7]. In this paper, we introduce our Beowulf-
dependent architecture for monitoring distributed process-
to-process communication in a language- and messaging
system-independent manner, rather than just those devel-
oped to work in a particular programming framework.
We indicate how we can monitor communication at the
thread/LWP level, including over bonded links [1]. We in-
troduce an open-source graphical interface to this informa-
tion (see Figure 6), and our initial scheduling algorithm with
experimental results.

Section 2 discusses related work. Section 3 covers the de-
sign of our system. Section 4 describes our first schedul-
ing algorithm. Section 5 offers our initial experimental re-
sults, and finally, Section 6 offers our conclusions and final
thoughts.

2 Background

We first briefly discuss monitoring and scheduling tools for
Beowulf clusters such as PCP, and go on to the MOSIX
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hinv.ncpu PMID: 60.0.32 [number of CPUs in the system]
value 2

kernel.percpu.cpu.user PMID: 60.0.0 [percpu user CPU time metric from
/proc/stat]

inst [0 or "cpu0"] value 18178010
mem.util.used PMID: 60.1.1 [used memory metric from /proc/meminfo]

value 237211648
mem.util.free PMID: 60.1.2 [free memory metric from /proc/meminfo]

value 26615808
network.interface.total.packets PMID: 60.3.17 [network total (in+out) packets
from /proc/net/dev per network interface]

inst [0 or "lo"] value 22988
inst [1 or "eth0"] value 1974784
inst [2 or "eth1"] value 0

proc.psinfo.ppid PMID: 60.8.3 [parent process identifier]
inst [1 or "000001 init [5]"] value 0

...
inst [404 or "000404 (lockd)"] value 1

...

Figure 2. PCP sample output.

environment [3, 11, 8].

Performance monitoring tools Several commercial and
open-source tools have been developed to monitor the per-
formance of a large number of computers such as a typical
computing cluster. In contrast with existing systems, which
usually display information only graphically, the DESPOT
project integrates performance monitoring with scheduling
systems. In the following sections, we discuss open-source
cluster-monitoring tools.

Several tools have been developed to monitor a large num-
ber of machines as stand-alone hosts as well as hosts in
a cluster. These tools can be useful because they monitor
the availability of services on a host and detect if a host is
overloaded, but they do not generally provide performance-
monitoring information at the level of detail needed to tune
the performance of a Beowulf cluster. Examples of these
systems are PaRe Procps [12], BWatch [10], Mon [15], No-
col [9], and Netsaint [6].

Detailed tracing of message-passing events in a cluster is af-
forded with theConch Visualization Packagefrom Georgia
Tech [14]. This tool can be used to perform detailed traces
of the execution of a distributed program, but the data re-
ported is more relevant to tracing and debugging than mea-
suring performance.

TheSMILE Cluster Management System(SCMS) is an ex-
tensible management tool for Beowulf clusters [7]. SCMS
provides a set of tools that help users monitor, submit com-
mands, query system status, maintain system configuration,
and more. System monitoring is limited to heartbeat-type
measurements.

The Network Weather Service, although not targeted at
Beowulf clusters, is a distributed system that periodically
monitors and dynamically forecasts the performance vari-

ous network and computational resources can deliver over
a given time interval [16, 17]. The service operates a
distributed set of performance sensors (network monitors,
CPU monitors, etc.) from which it gathers system condi-
tion information. It then uses numerical models to generate
forecasts of what the conditions will be for a given time
frame. NWS is used for various meta-computing systems
such as Globus and APPLeS [5, 4].

MOSIX is a popular platform for supporting distributed
computing. It enhances the Linux kernel with cluster com-
puting capabilities. In a MOSIX cluster, there is no need
to modify applications to run in the cluster, or to link ap-
plications with any library, or even to assign processes to
different nodes. MOSIX does it automatically and transpar-
ently. The resource sharing algorithms of MOSIX attempt
to equalize the processing load of the machines in the clus-
ter. However, the scheduling algorithms only consider the
total CPU load and memory usage of each machine. Per
process load and network load measurements are not con-
sidered [8].

MOSIX was useful for our experiments for two reasons.
First of all, it provides a framework and an API for migrat-
ing processes between machines. Thus it is a convenient
platform for the development of prototype scheduling algo-
rithms. Secondly, the built-in MOSIX scheduling algorithm
offers a baseline measuring stick for comparing our own
scheduling algorithms.

PCP The SGI Performance Co-Pilot (PCP) provides a
systems-level suite of tools that cooperate to deliver dis-
tributed, integrated performance management services.
PCP provides the ability to quickly isolate and understand
performance behavior, resource utilization, activity levels
and performance bottlenecks. Performance data may be
collected and exported from multiple sources, most notably
the hardware platform, the IRIX kernel, layered services,
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and end-user applications, and is returned in a structured
text format (for example, Figure 2).

There are several ways to extend the PCP by programming
certain of its components: by writing a Performance Met-
rics Domain Agent (PMDA) to collect performance met-
rics from an uncharted performance domain, or by creating
new analysis or visualization tools using documented rou-
tines from the Performance Metrics Application Program-
ming Interface (PMAPI).

Collection tools (called PMDAs) extract performance val-
ues from target systems but do not provide graphical user
interfaces. Systems supporting PCP services are broadly
classified into two categories:Collectorhosts have the Per-
formance Metrics Collection Daemon (PMCD) and one or
more PMDAs running to collect and export performance
metrics. Monitor hosts import performance metrics from
one or more collector hosts to be consumed by tools to
monitor, manage, or record the performance of the collec-
tor hosts. Each PCP-enabled host can operate as a col-
lector, or a monitor, or both. The monitoring tools con-
sume and process performance data using a public interface,
the Performance Metrics Application Programming Inter-
face (PMAPI). Below the PMAPI level is the pmcd process,
which acts in a coordinating role, accepting requests from
clients, routing requests to one or more PMDAs, aggregat-
ing responses from the PMDAs, and responding to the re-
questing client. Each performance metric domain (such as
IRIX or some DBMS) has a well-defined name space for
referring to the specific performance metrics it knows how
to collect. Monitoring tools communicate only with pmcd.
The PMDAs are controlled by pmcd and respond to requests
from the monitoring tools that are forwarded by pmcd to the
relevant PMDAs on the collection host.

Each PMDA provides a domain of metrics, whether they be
for IRIX, a database manager, a layered service, or an appli-
cation module. These metrics are referred to by name inside
the user interface, and with a numeric Performance Metric
Identifier (PMID) within the underlying PMAPI. The PMID
consists of three fields: the domain, the cluster, and the
item number of the metric. The domain is a unique num-
ber assigned to each PMDA. For example, two metrics with
the same domain number must be from the same PMDA.
The cluster and item numbers allow metrics to be easily or-
ganized into groups within the PMDA, and provide a hi-
erarchical taxonomy to guarantee uniqueness within each
PMDA.

3 System design

Our project’s goal is to take standard Beowulf technology
and create a more fine-grained, smarter Beowulf, which ac-
tively adapts to varying configurations and loads. A typical
Beowulf cluster consists of a number of processing nodes
connected via a network fabric, all monitored and sched-
uled by a dedicated management node acting as a bridge
to the outside network. Many Beowulf configurations are
heterogeneous, with nodes differing in number of proces-
sors, processor speeds, amount of memory, and I/O systems
(disk, network). Many computing environments expect a
symmetric cluster configuration, which can lead to a mis-
match between performance and expectations. DESPOT
makes no assumptions regarding the (non-)homogeneity of
its systems.

We extend SGI’s PCP (performance co-pilot) as an inter-
face to allow clients to retrieve and process performance-
related information easily. By use of dynamically linked
modules, we can provide traditional Unix statistics (netstat,
ipcs), Linux-related information (information provided by
the /proc file system), and new, non-traditional clustering
information through a single, well-defined, consistent inter-
face.

Although we will mainly be using PCP for its plugin frame-
work to provide an improved scheduling system, it has the
added benefit of giving an abundance of performance infor-
mation that may prove useful in the everyday debugging of
a high-performance cluster (such as SCSI/raid, NFS, inter-
rupt, and daemon statistics) with interesting features such
as logging, event recording, and playback. Sample output
from PCP is shown in Figure 2. PCP and the text-based
user interface are available under the Gnu General Public
Licenses (GPL). A graphical viewer is provided by SGI’s
commercial ACE product.

Monitoring threads The ability to do thread-level mon-
itoring of computation and communication is an integral
part of DESPOT, including both UNIX and Java threads.
Under Linux, Java native threads are separate lightweight
processes, allowing them to be monitored. DESPOT re-
quires the use of Java native threads if per-thread commu-
nication/processor monitoring is to be used. The use of tra-
ditional, or “green,” threads, causes all threads to be multi-
plexed onto a single process, so all behavior will be aggre-
gated at that level. Use of Java native threads allows us to
treat Java threads as standard Linux threads and provide this
important capability.

Monitoring communication Through integrating PCP’s
netstatmodule across all nodes in a cluster, we can create a
matrix outlining process-to-process connections. However,
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this does not indicate the volume of data being passed or
shared between processes. Thus, we actually have three
PCP modules to perform the communication monitoring
duties: Pnet, Pcap, and PPair. Pnet uses PCP’s netstat
module to provide information on sockets from individual
nodes. Pcapsits on top of the Linux networking code to
monitor packet traffic, andPPair, running on a single node
on the system, acts as the central clearinghouse to correlate
the PnetandPcapdata across the cluster. This allows us
to retrieve information about the entire cluster from a single
machine and reduces the load on individual nodes.Pcap
andPPair are discussed in more detail below.

Since connections are monitored at the socket/packet level,
some connections are unable to be monitored completely.
This would include communication through shared mem-
ory segments; or sockets to machines outside the cluster, in
which case statistics are not known for the remote process.
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TCP/IP  
Filter  

PCAP  

OS  

NetC ard  

 
 

Client  

Figure 3. Traffic capture module structure.

It is not possible to monitor the amount of intra-node com-
munication in generic Beowulf systems (i.e., those not run-
ning DSM or other distributed IPC systems) without creat-
ing several headaches. First, a large amount of kernel hack-
ing would be required, including changes to sensitive areas
of code – particularly the networking and shared-memory
sections. Second, by adding monitoring code, we would
end up significantly impacting performance by adding la-
tency to transmission times. And finally, this performance-
monitoring kernel code would have to be maintained as the
kernel is revised.

We could solve this intra-node communication problem by
implementing a layer above the standard system library
calls that records relevant information. This has the same
pitfalls as a kernel modification, but has the possibility of
missing data through the use of static linking or nonstan-
dard libraries in the observed applications.

The Pcap module is responsible for collecting informa-
tion about the amount of traffic between each node in the
cluster, and consists of two processes: a statistics process

 129.130.10.139:664 260 30 
128.169.93.174:8050 384 32 
129.130.10.139:1044 6240 112 
129.130.10.73:1023 602668 23618 
129.130.10.140:22 500 29 
129.130.10.139:22 7071221 33864 

Figure 4. Pcap information buffer.

which gathers information from the network interface cards
in promiscuous mode, and an agent process listening and
honoring requests for these statistics The statistics process
collects packet counts as well as total byte counts. Thus,
we can also distinguish data transfer connections from in-
teractive connections based on the ratio of bytes to packets
(a low ratio probably indicates an interactive session). The
module retains and reports only recent traffic. Longterm
trends should be recorded and analyzed with another mod-
ule if needed.

The implementation is largely based on the PCAP li-
brary. Tcpdumpis a front-end pretty-printer of the in-
formation which libpcap gathers. The statistics process
re-uses the tcpdump code, replacing pretty-printing with
statistics-gathering code. Time stamps, byte counts, and
packet counts are recorded in a hash table, which can then
be queried through the second process. The PCAP library
works through inserting an IP filter within the kernel to
promiscuously sort through all packets received by a node.

To avoid modifying libpcap, we had to use a two-process
system (Figure 3). Currently, libpcap has its own event loop
with no hooks to register new events for which to trigger
call-backs (such as IO on a file descriptor) except the tradi-
tional signal API. Thus, if queries from outside the machine
are to be honored, a separate process is needed to listen
for such queries, signal the statistics process, and relay the
info to the network. This agent process can be implemented
to honor INET socket-based requests, PCP requests, or re-
quests of any other type.

PPair - information integration PPair uses a binary tree
whose node contains the local address with port number and
the foreign address with its port number. Using RPC, we
acquire a snapshot of the netstat data on all the machines in
the existing Beowulf cluster, and we dynamically create a
binary tree using the information.

Pcapgathers information about bandwidth usage by various
processes, which is expressed in terms of packets per sec-
onds and bits per second. For example, from the first line
in Figure 4, 129.130.10.139:664 indicates PID of the pro-
cess, which is using 260 bits per second of bandwidth, and
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sending 30 is packets per second. So the complete snapshot
gives information about six processes’ recent network us-
age. This can then be combined with the information from
Pnet to associate communicating processes across the clus-
ter. PPair exports this data after aggregation with the other
nodes in XML format (Figure 5) for use with scheduling
systems and graphical monitoring tools.

 <?xml version="1.0"?>  
<address>  
<set>  
<address1>129.130.10.140:1787</address1>  
<ad dress2>129.130.10.139:22  </address2>  
<bps>2345</bps>  
<pps>12</pps>   
</set>  
<set>  
<address1>129.130.10.140:22  </address1>  
<address2>129.130.10.139:625 </address2>  
<bps>5643</bps>  
<pps>53</pps>  
</set>  
<set>  
<address1>129.130.10.139:22  </address1>  
<addres s2>129.130.10.140:1787</address2>  
<bps>6453</bps>  
<pps>18</pps>  
</set>  
<set>  
<address1>129.130.10.139:625 </address1>  
<address2>129.130.10.140:22  </address2>  
<bps>5483</bps>  
<pps>37</pps>  
</set>  
</address>  

 

Figure 5. PPair XML output.

Graphical display The intended consumer for the detailed
information being produced by our PCP modules is ad-
vanced scheduling algorithms. However, it is also useful
for system administrators. We have developed a graphi-
cal display in Java to show this information in a per-node
and aggregate form (Figure 6). The display shows the per-
process communication, as well as aggregate resource us-
age for memory, disk, number of processes, and network
traffic. It also shows the same information on a per-node
basis. We plan to make this available under the GPL as
an open-source alternative to SGI’s ACE product, which is
typically available only with the purchase of SGI systems.
The application uses JNI to connect with the PCP system
and acquire the data to be displayed. Data from PPair is in
XML format, which is parsed, aggregated, and shown.

4 Process Scheduling

Our initial experiments used PCP to collect and archive sys-
tem performance data and used the MOSIX environment to
support process migration. We present a scheduling tech-
nique which balances the CPU load, network traffic and
memory usage based on measurements collected for each
process as well total system load measurements.

Figure 6. Process memory/network usage dis-
play.
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Figure 7. Centralized scheduler associated
with PMDA and Migration Modules.
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The scheduling technique, that we have implemented, as-
signs a ‘happiness’ value to each process and sums these
happiness values to come up with a total happiness for the
cluster. A process is considered to be happiest if it re-
ceives the total amount of CPU, memory and network band-
width that it requires. We estimate the desired resource us-
age based on usage from the preceding time interval. The
algorithm attempts to maximize the total happiness. The
premise of this algorithm is similar to related algorithms
used by our laboratory for clustered web servers [2].

Happiness (Hij) for a particular process (i) on machine (j)
is

Hij = αHCPUi,j + βHNETi,j

whereα and β are typically both 0.5, meaning that the
weighting between network and CPU is equal.α = 1.0
andβ = 0 is equivalent to a load-balancing algorithm such
as that used by MOSIX. We define

HCPUi,j =
CPUavail

CPUdesiredi,j

If the process is currently using an amount of CPU propor-
tional to the number of other processes on the same proces-
sor, we assumeCPUdesired is equal to an entire CPU. If
the process is usinglessthan its “fair share”, then we as-
sume its CPU needs are being adequately met. We apply
a similar logic forNETdesired, additionally assuming that
communicating processes on the same node have adequate
bandwidth.

The system begins with a round robin assignment of pro-
cesses to machines in the cluster and then dynamically shift
processes between nodes. For each machines in the cluster,
we fetch the process metrics for all cluster processes and
find the available CPU and network bandwidth. Then we
find total happiness (H) for the cluster as a sum of all the
Hij values calculated from the above equation.

Next we calculate predicted happiness for other process to
node assignments. Predicted happiness is reduced by 10% if
process migration is required for the cost of performing the
migration. Once it is determined that a process migration
will result in improved overall happiness, then the MOSIX
process migration methods are called.

To reduce the algorithm’s exponential complexity, we use
the following heuristics. First, to minimize memory swap-
ping, we ignore any combination which requires more
memory for the processes on a machine than the machine’s
available RAM. Secondly, we do not investigate all the
combinations before migrating a processes. We stop our
search once a configuration is found which improves the

overall happiness of the cluster by a tunable factor (cur-
rently 20%). These have served to keep scheduling times
within a reasonable period, and we are investigating further
optimizations.

5 Experimental results

The small cluster used to prototype the scheduling algo-
rithm consisted of two dual processor 300MHz Pentium 2
systems with 256MB RAM and two 600MHz Intel Celeron
systems with 256MB RAM. The machines were connected
by 100Mbps switched Ethernet. The software used was Red
Hat Linux 6.2 with kernel 2.2.19, MOSIX 0.98 and PCP
2.2.1.

Our algorithm performed better than MOSIX by an amount
of 20-30% for computationally intensive process with bursts
of network communication over two machines, and aver-
aged approximately 15% improvement for four machines
(six processors). Table 1 lists results for our four-node pro-
totype system. Our scheduler is equivalent to the MOSIX
and round robin scheduler for homogenous CPU intensive
programs. We anticipate our scheduler will outperform
round robin by a substantially higher margin with heteroge-
nous processes.

6 Conclusions and future work

In this paper we have presented our system for monitoring
communication within a Beowulf cluster at the process-to-
process level, and shown how the system can also be used to
monitor thread-level communication as well. Other moni-
toring systems for Beowulf clusters are either methodology-
specific (such as LAM), or present only aggregated commu-
nication results. We have also given experimental results in-
dicating that the system has the rapid response time and low
overhead to be useful in our application domain. Finally, we
have also developed an open-source graphical front-end to
PCP that displays the enhanced level of detail.

We plan to extend the system and viewing application to a
hierarchical organization to increase its scalability over the
current, centralized system. We also plan to increase the
flexibility of the graphical monitor to allow users to click
on various computer pairs and get a detailed analysis of the
communication patterns. Another planned enhancement is
the inclusion of a history mechanism.
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Test Program DESPOT MOSIX Round Robin
Type µ (sec) σ2 µ (sec) σ2 %∆ µ (sec) σ2 %∆

All CPU bound 266 2.0 259 0.316 -2.7 same as MOSIX
4 processes
All CPU bound 511.1 4.0 502.9 1.6 -1.5 same as MOSIX
8 processes
Network bound 308 0.3 349 0.3 +11.7
5 proc., 60 1kB mesg.
Network bound 389.8 0.2 460.6 0.7 +15.4
5 proc., 75 1kB mesg.
Combination CPU–Net 708 5.0 855.5 1.3 +17.2 790.9 1.52 +10.5
70% CPU, 30% Net

Table 1. Scheduling algorithm results. Shown are mean, std. dev., and percent change
relative to DESPOT.
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