
Analysis of the effects of removing redundant header information in
persistent HTTP connections

Timothy Bower, Daniel Andresen∗, David Bacon
Department of Computing and Information Sciences

234 Nichols Hall
Kansas State University
Manhattan, KS 66506
voice: 785-532-6350
fax: 785-532-7353

{tim, dan, dbacon}@cis.ksu.edu

Abstract

This paper examines the potential benefits of an exten-
sion to the HTTP protocol that allows the web server
and client to establish a session of HTTP messages as
opposed to a sequence of independent connections. We
report results from experiments which measure the po-
tential bandwidth saving achieved by removing redun-
dant headers when possible. We report findings from an
actual implementation of the protocol extension, from
which we derive a model for calculating the potential
bandwidth savings based on statistics of the HTTP traf-
fic. Based on our implementation, we propose an ar-
chitecture which can be used to deploy the protocol ex-
tension on point–to–point network connections without
interfering with the operation of either the web client
(browser) or server. Next, we examine the access logs
from our departmental web server and calculate the ex-
pected savings based on statistics from observed HTTP
traffic. The impact of removing redundant header infor-
mation in HTTP replies is fairly minimal (1–5% savings)
because the size of the content is much larger than the
size of the header. However, we found that, on average,
HTTP requests from clients to servers are reduced to 55
to 60 percent of their normal size.

Keywords: http, WWW, performance, bandwidth

Presenting author: Daniel Andresen

Conference:IC’01

1 Introduction

For reasons of robustness and simplicity, the HTTP pro-
tocol was designed as a stateless protocol. That is to
say, with HTTP/1.0 [1] each client request contains all
the information the server will need to reply as if the
server had never communicated with this client before.
This simple design fits well with the distributed nature
of the World Wide Web and has indeed proven to be a
robust design. However, given the nature of TCP/IP and
observed statistics of HTTP requests, this design is sub-
optimal in terms of performance [4, 3].

The problems with HTTP/1.0 relative to TCP/IP were
quickly observed by Simon Spero [4]. With HTTP/1.0,
each request is a separate network connection, which
is inefficient. The HTTP/1.1 version of the protocol
addressed these shortcomings by introducing persistent
(keep-alive) connections [2]. Given the advent of per-
sistent connections, it is natural to consider the pos-
sible benefits of reducing some of the redundancy in
the HTTP headers. A framework for establishing ses-
sions, and hence states, to reduce header redundancy
was proposed in the so-called sticky header proposal [3]
to W3C, which was deferred from HTTP/1.1.

The potential benefits from reducing the redundancy in
HTTP headers seems to be greater today than in the past.
Many web servers are receiving an increasing number of
requests from web-caching proxies and search engines.
Caching proxies and search engines tend to make a large
number of requests in a short period of time, and a high
percentage of their requests are HEAD or If-Modified-
Since GET requests for which the reply often consists
of only a header. Traffic of this nature will especially

1



benefit from a reduction in redundant HTTP headers.

In this paper, we report on the results of experiments
aimed at establishing the feasibility and potential band-
width saving of a HTTP extension which establishes the
notion of a session between client and web server and
removes redundant headers when possible. We report
findings from actually implementing the protocol from
which we derive a model for calculating the potential
bandwidth savings based on statistics of the HTTP traf-
fic. Next, we examine over 670,000 HTTP requests and
replies from the access logs from our departmental web
server and calculate statistical metrics to estimate the
savings based on observed HTTP traffic.

The paper is organized as follows: In Section 2, we
present the background on the HTTP protocol and typ-
ical web server workloads in today’s e-commerce envi-
ronment. In Section 3, we discuss our system design for
an experimental implementation of the extended HTTP
protocol. Based on our implementation, we show a
model for the expected gains from reducing redundancy
in the HTTP headers. Section 4 presents the experimen-
tal results, and section 5 discusses conclusions.

2 Background and motivation

Web usage usually consists of multiple requests to the
same provider in a short amount of time. The most
common resource requested via HTTP is an HTML
page, which itself usually contains embedded objects
(images, frames, style-sheets) that also need to be re-
quested. These additional resources usually reside on
the same provider, or alternately on a dedicated image
server or some similar solution. Users selecting links
off a web page to other pages/resources from the same
server and search engines probing the network for new
and changed documents further add to the frequency of
traffic between the server and client in a short period of
time.

When a client and server exchange multiple messages
in a short period of time, then the set of messages ex-
changed can be called asession. For the client and
server to establish a session, then each must maintain
a dictionary (cache) of hosts with whom it has an es-
tablished session. Of course, the host dictionary would
have a timeout value associated with the idle time until
host entries expire and are removed from the dictionary.
A longer timeout increases the probability of future re-
quests being a part of an established session. This is
reflected in Figure 1, which shows statistics from our
departmental web server. Figure 1 shows the percentage
of requests which arrived within a specified timeout of

a previous request from the same client.1 That is to say,
if the server had kept a host dictionary of clients with
which it had an established session, then the percent-
age of requests that are part of an established session are
shown in Figure 1 over a range of timeout values.

0 5 10 15 20
80

82

84

86

88

90

92

Dictionary Timeout (minutes)

P
er

ce
nt

Figure 1. Percentage of HTTP requests in
host dictionary

Each HTTP request contains a list of header tags denot-
ing the client’s host information and capabilities. Each
response contains information about the server, the ob-
ject attached, or error information. Figure 2 shows a typ-
ical example of a HTTP request and reply. Table 2 lists
the header tags and the size of each tag which may re-
moved from messages which are a part of an established
session.2

GET / HTTP/1.1
Accept: image/gif, image/x-xbitmap,
image/jpeg, image/pjpeg, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0
Host: www.cis.ksu.edu
Connection: Keep-Alive

Figure 2. Example HTTP request headers

1Statistics taken from 14 days of access logs, 670,113 HTTP re-
quests.

2Header tag sizes are based on a Netscape 4.7 browser running on
a Linux platform.

2



Header Tag Size (bytes)
Request Accept 70
Headers Charset 34

Encoding 21
Language 19
User-Agent 61

Total 205
Reply Server 40
Headers

Table 1. Redundant headers tags which
may be removed in an established session

3 System architecture

We implemented a protocol similar to that proposed in
the sticky headers proposal [3] to validate the feasibility
of the protocol and to establish a framework for mod-
eling the performance benefits. So as to not affect the
web client or server, the extensions to HTTP were im-
plemented between two proxy servers. This design pro-
vided a convenient means to test the implementation
with real clients and a real server without the need to
modify either the client or server. This also demonstrates
an architecture allowing for a point-to-point use of the
protocol extension on bandwidth-constrained routes re-
gardless of if the clients and servers support the protocol
extension. Figure 3 shows a block diagram of the imple-
mentation.

Apache
Web Server

Server Side
Proxy

Client
(Netscape)

Client
(Netscape)

Client Side
Proxy

Client Side
Proxy

Standard HTTP HTTP protcol extension Standard HTTP

Figure 3. Block diagram of experimental
environment

In our implementation, we built on Jigsaw, the W3’s
easily extendible Java web server. This web server is
designed such that filters can be placed on any resource.
To implement our host/header dictionary and filtering on
the server side, we wrote a ServerStateFilter which was
placed on the root resource of the server. Thus, every
client was entered into the dictionary. For the client side,
we configured the Jigsaw web server as a proxy, and
placed a ClientStateFilter on the proxy resource. Each
of these filters uses a HostDict to keep track of peers and
their header values. The only difference is the Request

and Response objects are opposite.

The HostDict is responsible for maintaining a dictio-
nary of hosts and their current header values. Based on
these values, the HostDict is also responsible for strip-
ping the outgoing messages and reconstructing the in-
coming messages.

The dictionary categorizes headers into three tiers ac-
cording to how their values might change: fixed, some-
times, always. “Fixed” headers are those related to the
host (e.g., its host-name or IP), which will not change for
a particular peer. “Sometimes” headers are those that
change state but possibly maintain the same value for
multiple consecutive messages. “Always” denotes head-
ers whose values always change (e.g., Content-Lengths
or hashes). These are usually headers related to the par-
ticular resource requested.

The “Fixed” headers are exchanged only once. The
“Sometimes” headers are only sent when their value is
changed. The “Always” headers are not touched and are
sent with each request.

With respect to the three categories of headers, the na-
ture of requests and responses is quite different. The
Request contains much information about the host and
its capabilities; hence, many of the headers can be fil-
tered. However, the Response headers are almost all re-
lated to the resource it is returning, which fall into the
always category. Savings on Response messages are sig-
nificantly less than that of Request messages.

The simulation was performed using as close to real
world conditions as possible. A state-enabled proxy was
set up as the server. A second proxy was set up to act as
a state-enabled browser using the first proxy as its proxy
server. (See Figure 3.) Each proxy gathered the statistics
of byte savings. For each HTTP request, a simple shell
script was used to iterate through a list of URLs remote-
controlling a Netscape Navigator process to load each
page. The list of URLs was obtained from the Apache
logs of our departmental web server. The simulation was
run to verify the functionality of the extended protocol
and to ensure that the observed results match with our
model for the bandwidth savings.

Modeling the Bandwidth Savings

In our implementation, we add an additional header tag
called “has state” to each header. This communicates
whether the client and server have the other in their lo-
cal host dictionary (cache) of known hosts. This mes-
sage adds 15 bytes to each header. As was discussed in
Section 2, if the client proxy knows that the client is in
the server side proxy dictionary, it strips out 205 bytes

3



of redundant fixed headers. So the net savings for a mes-
sage in an established session is at least 190 bytes. Note
that we only account for the fixed headers and not the
sometimes changing headers; thus, our calculation is a
worst-case estimate.

For reply messages, the “has state” header is still added,
but 40 bytes for the “server” header is removed from
messages in an established session.

Expected Savings on HTTP requests:

Let Sr be the size of a normal HTTP request, whileSr′
represents the new HTTP request size.
LetNs represent the number of a requests within a given
time interval that are part of an established session.
LetNt represent the number of all HTTP requests within
a time interval.
Then the expected value of the ratio of the size of the
new requests to the size of a normal request is given by:

E
{
Sr′

Sr

}
= (1)

E{Sr} − E
{
Ns
Nt

}
190 +

(
1− E

{
Ns
Nt

})
15

E{Sr}

LetSh be the size of a normal HTTP reply header, while
Sh′ is the size of the new HTTP reply header.
LetSc be the size of the reply content.
Let Ns represent the number of replies within a given
time interval that are part of an established session.
LetNt represent the number of all HTTP replies within
the time interval on the network link.
Then the expected value of the ratio of the size of the
new replies to the size of a normal reply is given by:

E
{
Sh′ + Sc
Sh + Sc

}
= (2)

E{Sh}+ E{Sc} − E
{
Ns
Nt

}
27 +

(
1− E

{
Ns
Nt

})
15

E{Sh}+ E{Sc}

4 Experimental results

The implementation of the protocol extension demon-
strated the feasibility of eliminating redundant header
tags. It also gave us an empirical basis for a model of the
performance benefits based on HTTP statistics. Using
the performance model, we analyzed access logs from
our departmental web server to calculate the expected
bandwidth savings. We calculated the statistical mea-
sures needed for equations 1 and 2 based on 14 days of
access logs, containing 670,113 HTTP requests. Some
statistics regarding the HTTP requests and the size of the
replies are listed in Table 4.

We calculated the statistical metrics for dictionary time-
out values of 1, 2, 3, 4, 5, 8, 10, 15 and 20 minutes. The

0 5 10 15 20
54

55

56

57

58

59

60

61

Dictionary Timeout (minutes)

R
eq

ue
st

 S
iz

e 
(P

er
ce

nt
 o

f N
or

m
al

)

Figure 4. Average Request Header Size

Request Type 200 304 other
% Size % % Size

GET 66.83 14833 17.22 11.8 15674
GET (cgi) 1.74 4042 0 0.65 502
POST 0.62 3139 0 0.068 354
HEAD 0.88 0 0.002 0.128 0
other 0.015 0 0 0.05 151

Table 2. HTTP Statistics of Observed
Server Logs

4



measured probability of a request being a part of an ex-
isting session (E{Ns/Nt}) is shown in Figure 1. The
metrics which are constant for all timeout values are the
normal header and content sizes (Sr = 381.04 bytes;Sh
= 223.35 bytes; andSc = 11,856 bytes). The savings
on requests are significant — new request sizes are 55–
60% of normal requests sizes, which is a savings of 40–
60%. The expected value of the new request header size
(E{Sr′/Sr}) is shown in Figure 4.

The overall savings on the replies is fairly insignificant;
average reply is 99.8% of the normal size. The sav-
ings was the same for any timeout value. This is be-
cause the average content size,Sc, is so large that the
header savings does not have much impact. However,
some clients, such as proxy cache servers or search en-
gines, often make HEAD requests or If-Modified-Since
GET requests, which lowers the average content size.
To examine traffic between a search engine and our web
server, we looked at the requests from several search en-
gines in isolation. Some search engines make extensive
use of HEAD and If-Modified-Since requests, so the
savings on the replies was more. The best case found
was a 12% reduction (88% of normal) with a 20-minute
dictionary timeout. Other search engines take a more
brute force approach and the savings on reply messages
is again minimal (1–5%).

One concern with such an implementation is the amount
of memory which would be required to hold the host
dictionary for a given timeout value. We found that the
maximum number of active sessions increases linearly
with the timeout value. Figure 5 shows the maximum
number of active sessions for a given timeout value.
Note from Figure 1 that with a timeout of 10 minutes,
nearly 90% of the requests are part of a previously es-
tablished session, requiring less than 150 sessions to be
saved. Hence, memory constraints do not pose a signifi-
cant obstacle to implementing the protocol extension.

5 Conclusions

We establish that it is feasible to implement an exten-
sion to the HTTP protocol which allows web clients and
servers to, without modification, establish sessions and
remove some of the redundant header tags in HTTP mes-
sages. Based on our implementation of such a proto-
col on a point–to–point network link, we show a model
for calculating the savings associated with such a proto-
col based on measurements of statistical metrics of the
HTTP traffic. We then calculate the expected saving for
our own departmental web server.

Because the content size is on average much larger than
the headers, the overall savings for HTTP replies is min-

0 5 10 15 20
0

50

100

150

200

250

Dictionary Timeout (minutes)

M
ax

im
um

 A
ct

iv
e 

S
es

si
on

s

Figure 5. Maximum Number of Active Ses-
sions

imal (1–5% in most cases). However, the bandwidth
savings of HTTP requests is significant (40–45% sav-
ings — message lengths are 55–60% of normal size de-
pending on the timeout value used). In the case of the
server logs we examined, the potential saving on re-
quests alone was 102–115Mbytes for the 670,113 re-
quests considered.

Other implementations of such an extension to the
HTTP protocol may vary slightly in terms of the num-
ber of bytes removed from the headers, and other sites
may have a different statistical mix of HTTP traffic, but
it is hoped that the information presented here will give
perspective to the discussion of the potential benefits of
such an extension to the HTTP protocol.

References

[1] T. Berners-Lee, R. Fielding, and H. Frystyk. Hy-
pertext Transfer Protocol – HTTP/1.0, May 1996.
http://www.ics.uci.edu/pub/ietf/http/rfc1945.html.

[2] J. Gettys, J. Mogul, H. Frystyk, L. Masin-
ter, P. Leach, and T. Berners-Lee. Hyper-
text Transfer Protocol – HTTP/1.1, June 1999.
http://www.w3.org/Protocols/rfc2616/rfc2616.html.

[3] A. Hopmann. Persistent HTTP Connec-
tions. ResNova software, Inc., Feb. 1996.
http://oradb1.jinr.ru/Info/std/draft-ietf-http-ses-ext-01.txt.

[4] S. E. Spero. Analysis of HTTP Performance Problems.
http://sunsite.unc.edu/mdma-release/http-prob.html.

5


